Robust Global Feature Based Data Association With a Sparse Bit Optimized Maximum Clique Algorithm

This paper presents a robust solution to the mobile robotics data association problem based on solving the maximum clique problem (MCP) in a typically sparse correspondence graph, which contains compatibility information between pairs of observations and landmarks. Bit sparse optimizations are designed and implemented in a new algorithm BBMCS, which reduces computation and memory requirements of a leading general purpose maximum clique solver, to make it possibly the best exact sparse MCP algorithm currently found in the literature. BBMCS is reported to achieve very good results in terms of robustness with few assumptions on noise and visibility, while managing very reasonable computation time and memory usage even for complex large data association problems.

[1]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[2]  Pablo San Segundo,et al.  Fast exact feature based data correspondence search with an efficient bit-parallel MCP solver , 2010, Applied Intelligence.

[3]  Etsuji Tomita,et al.  An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique , 2003, DMTCS.

[4]  Javier González,et al.  A robust, multi-hypothesis approach to matching occupancy grid maps , 2013, Robotica.

[5]  Pablo San Segundo,et al.  An exact bit-parallel algorithm for the maximum clique problem , 2011, Comput. Oper. Res..

[6]  Wilbert E. Wilhelm,et al.  Clique-detection models in computational biochemistry and genomics , 2006, Eur. J. Oper. Res..

[7]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[8]  Shinya Takahashi,et al.  A Simple and Faster Branch-and-Bound Algorithm for Finding a Maximum Clique , 2010, WALCOM.

[9]  Timothy S. Bailey,et al.  Mobile Robot Localisation and Mapping in Extensive Outdoor Environments , 2002 .

[10]  Frank Dellaert,et al.  Covariance recovery from a square root information matrix for data association , 2009, Robotics Auton. Syst..

[11]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[12]  H. Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part II State of the Art , 2006 .

[13]  José A. Castellanos,et al.  Linear time vehicle relocation in SLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[14]  Lina María Paz,et al.  Global localization in SLAM in bilinear time , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Patrick Prosser,et al.  Exact Algorithms for Maximum Clique: A Computational Study , 2012, Algorithms.

[16]  Pablo San Segundo,et al.  An improved bit parallel exact maximum clique algorithm , 2013, Optim. Lett..

[17]  George J. Pappas,et al.  Hybrid Control for Connectivity Preserving Flocking , 2009, IEEE Transactions on Automatic Control.

[18]  Edwin Olson,et al.  Recognizing places using spectrally clustered local matches , 2009, Robotics Auton. Syst..

[19]  Ian D. Reid,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems a Comparison of Loop Closing Techniques in Monocular Slam , 2022 .

[20]  Janez Konc,et al.  An improved branch and bound algorithm for the maximum clique problem , 2007 .

[21]  Michael Bosse,et al.  Keypoint design and evaluation for place recognition in 2D lidar maps , 2009, Robotics Auton. Syst..

[22]  Lutz Volkmann,et al.  Graphs having distance-n domination number half their order , 2002, Discret. Appl. Math..

[23]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .