Sub-megahertz linewidth single photon source

We report 100% duty cycle generation of sub-MHz single photon pairs at the rubidium D1 line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity cross correlation function exhibits a bandwidth of 666 ± 16 kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal, and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. The quantum nature of the source is confirmed by the idler-triggered second-order autocorrelation function at τ = 0 to be g s , s ( 2 ) ( 0 ) =  0.016 ± 0.002 for a heralding rate of 5 kHz. The generated photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  G. Boyd,et al.  Parametric Interaction of Focused Gaussian Light Beams , 1968 .

[3]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[4]  P. Grangier,et al.  Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences , 1986 .

[5]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[6]  Z. Y. Ou,et al.  Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons , 1999 .

[7]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[8]  M. Lukin,et al.  Storage of light in atomic vapor. , 2000, Physical Review Letters.

[9]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[12]  Pascal Baldi,et al.  High-quality asynchronous heralded single-photon source at telecom wavelength , 2004 .

[13]  T. Skettrup,et al.  Laser resonators with several mirrors and lenses with the bow-tie laser resonator with compensation for astigmatism and thermal lens effects as an example , 2005 .

[14]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[15]  U. Herzog,et al.  Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold , 2007, 0709.2829.

[16]  Jian-Wei Pan,et al.  Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. , 2008, Physical review letters.

[17]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[18]  Aephraim M. Steinberg,et al.  Bright filter-free source of indistinguishable photon pairs. , 2008, Optics express.

[19]  J. Laurat,et al.  Mapping photonic entanglement into and out of a quantum memory , 2007, Nature.

[20]  G. Weihs,et al.  Coherence measures for heralded single-photon sources , 2008, 0807.1725.

[21]  Morgan W Mitchell,et al.  Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction. , 2009, Optics letters.

[22]  N. Gisin,et al.  Multimode quantum memory based on atomic frequency combs , 2008, 0805.4164.

[23]  Matthias Scholz,et al.  Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. , 2009, Physical review letters.

[24]  P. Lam,et al.  Ac Stark gradient echo memory in cold atoms , 2010, 1008.1122.

[25]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[26]  E. Pomarico,et al.  Engineering integrated pure narrow-band photon sources , 2011, 1108.5542.

[27]  Jian-Wei Pan,et al.  Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion , 2011 .

[28]  P. K. Lam,et al.  Unconditional room-temperature quantum memory , 2011, 1412.8235.

[29]  Alessandro Cerè,et al.  Atom-resonant heralded single photons by interaction-free measurement. , 2011, Physical review letters.

[30]  P. Lam,et al.  High efficiency coherent optical memory with warm rubidium vapour , 2010, Nature communications.

[31]  Félix Bussières,et al.  Quantum storage of photonic entanglement in a crystal , 2010, Nature.

[32]  P. Lam,et al.  Storage and manipulation of light using a Raman gradient-echo process , 2012, 1203.6489.

[33]  F. Wolfgramm Atomic quantum metrology with narrowband entangled and squeezed states of light , 2012 .

[34]  Atomic Quantum Metrology with Polarization-Entangled States of Light , 2012 .

[35]  P. Altin,et al.  Gradient echo memory in an ultra-high optical depth cold atomic ensemble , 2012, 1211.7171.

[36]  Matteo Cristiani,et al.  Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. , 2013, Physical review letters.

[37]  B. Shi,et al.  Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration , 2014 .

[38]  C. Simon,et al.  Raman quantum memory based on an ensemble of nitrogen-vacancy centers coupled to a microcavity , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[39]  S. Du,et al.  Photon pairs with coherence time exceeding 1 μs , 2014 .

[40]  Subnatural-linewidth polarization-entangled photon pairs with controllable temporal length. , 2014, Physical review letters.

[41]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[42]  Christine Silberhorn,et al.  Direct generation of genuine single-longitudinal-mode narrowband photon pairs , 2015, 1504.01854.

[43]  H. de Riedmatten,et al.  Solid State Spin-Wave Quantum Memory for Time-Bin Qubits. , 2015, Physical review letters.

[44]  P. Lam,et al.  Highly efficient optical quantum memory with long coherence time in cold atoms , 2016, 1601.04267.

[45]  Zach DeVito,et al.  Opt , 2017 .