Gaining Insight from Operational Data for Automated Responses
暂无分享,去创建一个
Larisa Shwartz | Kristof Kloeckner | Maheswaran Surendra | Amit Paradkar | Nicholas C. M. Fuller | Stefan Pappe | Dorothea Wiesmann | John S. Davis | John Davis | Giovanni Lanfranchi | M. Surendra | A. Paradkar | Dorothea Wiesmann | L. Shwartz | K. Kloeckner | Nicholas C. Fuller | G. Lanfranchi | S. Pappe
[1] Jiuyong Li. Robust rule-based prediction , 2006, IEEE Transactions on Knowledge and Data Engineering.
[2] Ramakrishnan Srikant,et al. Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.
[3] David M. Pennock,et al. Categories and Subject Descriptors , 2001 .
[4] Qing Wang,et al. Online Context-Aware Recommendation with Time Varying Multi-Armed Bandit , 2016, KDD.
[5] Jiawei Han,et al. CPAR: Classification based on Predictive Association Rules , 2003, SDM.
[6] Wei Chu,et al. A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.
[7] Steven Bird,et al. NLTK: The Natural Language Toolkit , 2002, ACL.
[8] Jiayu Zhou,et al. A Space Alignment Method for Cold-Start TV Show Recommendations , 2015, IJCAI.
[9] Navendu Jain,et al. Juggling the Jigsaw: Towards Automated Problem Inference from Network Trouble Tickets , 2013, NSDI.
[10] Michael J. Pazzani,et al. Reducing Misclassification Costs , 1994, ICML.
[11] Ethem Alpaydin,et al. Introduction to machine learning , 2004, Adaptive computation and machine learning.