On the enhancement of centrifugal separation

We consider the two-phase flow of a suspension in a rotating cylinder with inclined endplates for which inertial and viscous effects are small. It is shown that, when the Coriolis force is dominant, flow in the core is essentially unaffected by geometry. If a fluid particle can make a complete circuit about the rotation axis, the sedimentation velocity cannot be augmented by geometrical effects as it can in gravitational settling. However, with the insertion of a complete meridional barrier to block movement around the centre, separation becomes more sensitive to the shape of the container walls. In this case, behaviour similar to that in a gravitational field is possible once again.