Nitrene–Nitrene Rearrangement under Thermal, Photochemical, and Electron‐Impact Conditions: The 2‐Azidopyridines/Tetrazolo[1,5‐a]pyridines

N-15-Labeling demonstrates that the two nitrogen atoms in the 2-pyridylnitrene radical cation 2(+) become equivalent prior to fragmentation in the mass spectrometer. Furthermore, the mass spectra of 6- and 7-tetrazolo[1,4-a]pyridine are identical, as are those of 5- and 8-tetrazolo[1,5-a]pyridine, thereby again demonstrating interconversion of the nitrogen atoms in 2-pyridylnitrenes. These rearrangements parallel the reactions established under thermal (flash vacuum pyrolysis) and photochemical condition. Calculations of the energies of ground and transition states at the CASPT2(7,8) level support the notion that 2-pyridylnitrenes undergo very easy and exothermic ring expansion to 1,3-diazacycloheptatetraene 3, both in the neutrals and the radical cations. In addition, the ring opening to 4-cyanobutadienylnitrene 4 can take place in both the neutrals and the radical cations with modest activation barriers.

[1]  Shanshan Liu,et al.  Conversion of pyridine N-oxides to tetrazolopyridines. , 2014, The Journal of organic chemistry.

[2]  C. Wentrup,et al.  1,5-(1,7)-Biradicals and Nitrenes Formed by Ring Opening of Hetarylnitrenes , 2013 .

[3]  Toru Shiozaki,et al.  Communication: extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. , 2011, The Journal of chemical physics.

[4]  C. Wentrup Nitrenes, carbenes, diradicals, and ylides. Interconversions of reactive intermediates. , 2011, Accounts of chemical research.

[5]  P. Bednarek,et al.  2-Pyridylnitrene and 3-pyridazylcarbene and their relationship via ring-expansion, ring-opening, ring-contraction, and fragmentation. , 2010, The Journal of organic chemistry.

[6]  Yuyang Li,et al.  Identification and Chemistry of Phenylnitrene in Premixed Pyridine/Oxygen/Argon Flame with Tunable Synchrotron Photoionization , 2007 .

[7]  F. Chau,et al.  First determination of ionization energies of phenylnitrene , 2003 .

[8]  Hans-Joachim Werner,et al.  Multireference perturbation theory for large restricted and selected active space reference wave functions , 2000 .

[9]  Hans-Joachim Werner,et al.  Third-order multireference perturbation theory The CASPT3 method , 1996 .

[10]  M. W. Wong,et al.  2-Pyridylnitrene−1,3-Diazacyclohepta-1,2,4,6-tetraene Rearrangements in the Trifluoromethyl-2-pyridyl Azide Series1a , 1996 .

[11]  C. Wentrup,et al.  ESR‐spektroskopischer Nachweis thermisch erzeugter Triplett‐Nitrene und photochemisch erzeugter Triplett‐Cycloheptatrienylidene , 1986 .

[12]  C. Wentrup,et al.  ESR Observation of Thermally Produced Triplet Nitrenes and Photochemically Produced Triplet Cycloheptatrienylidenes , 1986 .

[13]  C. Wentrup,et al.  Isolation of diazacycloheptatetraenes from thermal nitrene-nitrene rearrangements , 1980 .

[14]  F. Wehrli,et al.  Tetrazoloazines. 15N nuclear magnetic resonance and infrared absorption spectroscopy , 1976 .

[15]  R. Fraser,et al.  The mass spectrometry of some aromatic azides , 1973 .

[16]  E. Scriven,et al.  Mass spectrometry of aryl azides , 1971 .

[17]  J. Henion,et al.  Hydrogen randomization in phenyl azide , 1970 .

[18]  C. Djerassi,et al.  Mass spectrometry in structural and stereochemical problems. CXCII. Skeletal rearrangement in the fragmentation of phenyl azide. , 1970 .

[19]  C. Wentrup Hetarylnitrenes—II : Azido/tetrazoloazine tautomerisation, and evidence for nitrene formation in the gas-phase , 1970 .

[20]  C. Wentrup,et al.  Nitrogen scrambling in 2-pyridylnitrene , 1969 .