Using Homotopy WHEP technique for solving a stochastic nonlinear diffusion equation

In this paper, the diffusion equation under square and cubic nonlinearities and stochastic nonhomogeneity is solved using the Homotopy WHEP technique. The homotopy perturbation method is introduced in the WHEP technique to deal with non-perturbative systems. The new technique is then used to solve the nonlinear diffusion equation by making comparisons with Homotopy perturbation method (HPM). The method of analysis is illustrated through case studies and figures.

[1]  Magdy A. El Tawil,et al.  Nonhomogeneous Boundary Value Problems , 1996 .

[2]  W. C. Meecham,et al.  The Wiener-Hermite expansion applied to decaying isotropic turbulence using a renormalized time-dependent base , 1978, Journal of Fluid Mechanics.

[3]  R. Manthey Weak Convergence of Solutions of the Heat Equation with Gaussian Noise , 1985 .

[4]  Ji-Huan He,et al.  The homotopy perturbation method for nonlinear oscillators with discontinuities , 2004, Appl. Math. Comput..

[5]  H. Uemura Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behaviour , 1996 .

[6]  Goodarz Ahmadi,et al.  Application of Wiener-Hermite Expansion to Nonstationary Random Vibration of a Duffing Oscillator , 1983 .

[7]  V. LoDato,et al.  STOCHASTIC PROCESSES IN HEAT AND MASS TRANSPORT , 1973 .

[8]  R. Manthey Existence and Uniqueness of a Solution of a Reaction‐Diffusion Equation with Polynomial Nonlinearity and White Noise Disturbance , 1986 .

[9]  Magdy A. El-Tawil,et al.  The Homotopy Wiener-Hermite Expansion and Perturbation Technique (WHEP) , 2008, Trans. Comput. Sci..

[10]  Ji-Huan He A coupling method of a homotopy technique and a perturbation technique for non-linear problems , 2000 .

[11]  Ji-Huan He SOME ASYMPTOTIC METHODS FOR STRONGLY NONLINEAR EQUATIONS , 2006 .

[12]  Ji-Huan He Homotopy perturbation technique , 1999 .

[13]  J. D. Fériet,et al.  Random Solutions of Partial Differential Equations , 1956 .

[14]  Gamal M. Mahmoud,et al.  The solvability of parametrically forced oscillators using WHEP technique , 1999 .

[15]  G. H. Canavan,et al.  Relationship between a Wiener–Hermite expansion and an energy cascade , 1970, Journal of Fluid Mechanics.

[16]  M. El-Tawil,et al.  Solving Nonlinear Diffusion Equations without Stochastic Homogeneity Using the Homotopy Perturbation Method , 2009 .

[17]  E. F. Abdel Gawad,et al.  General stochastic oscillatory systems , 1993 .

[18]  J. C. T. Wang,et al.  Wiener‐Hermite expansion and the inertial subrange of a homogeneous isotropic turbulence , 1974 .

[19]  R. Marcus Parabolic Itô equations with monotone nonlinearities , 1978 .

[20]  A. T. Bharucha-Reid,et al.  Probabilistic methods in applied mathematics , 1968 .

[21]  Magdy A. El-Tawil,et al.  On the solution of stochastic oscillatory quadratic nonlinear equations using different techniques, a comparison study , 2008 .

[22]  P. Saffman Application of the Wiener-Hermite Expansion to the Diffusion of a Passive Scalar in a Homogeneous Turbulent Flow , 1969 .

[23]  Tsutomu Imamura,et al.  Turbulent Flows near Flat Plates , 1980 .

[24]  C. Eftimiu First‐order Wiener‐Hermite expansion in the electromagnetic scattering by conducting rough surfaces , 1988 .

[25]  Magdy A. El-Tawil The Average Solution of a Stochastic Nonlinear Schrodinger Equation under Stochastic Complex Non-homogeneity and Complex Initial Conditions , 2009, Trans. Comput. Sci..

[26]  G. Bécus Random generalized solutions to the heat equation , 1977 .

[27]  Ji-Huan He,et al.  Homotopy perturbation method: a new nonlinear analytical technique , 2003, Appl. Math. Comput..

[28]  Gamal M. Mahmoud,et al.  On a complex Duffing system with random excitation , 2008 .

[29]  S. Liao,et al.  Beyond Perturbation: Introduction to the Homotopy Analysis Method , 2003 .