Explaining millimeter-sized particles in brown dwarf disks

Context. Planets have been detected around a variety of stars, including low-mass objects, such as brown dwarfs. However, such extreme cases are challenging for planet formation models. Recent sub-millimeter observations of disks around brown dwarf measured low spectral indices of the continuum emission that suggest that dust grains grow to mm-sizes even in these very low mass environments. Aims. To understand the first steps of planet formation in scaled-down versions of T-Tauri disks, we investigate the physical conditions that can theoretically explain the growth from interstellar dust to millimeter-sized grains in disks around brown dwarf. Methods. We modeled the evolution of dust particles under conditions of low-mass disks around brown dwarfs. We used coagulation, fragmentation and disk-structure models to simulate the evolution of dust, with zero and non-zero radial drift. For the non-zero radial drift, we considered strong inhomogeneities in the gas surface density profile that mimic long-lived pressure bumps in the disk. We studied di erent scenarios that could lead to an agreement between theoretical models and the spectral slope found by millimeter observations. Results. We find that fragmentation is less likely and rapid inward drift is more significant for particles in brown dwarf disks than in T-Tauri disks. We present di erent scenarios that can nevertheless explain millimeter-sized grains. As an example, a model that combines the following parameters can fit the millimeter fluxes measured for brown dwarf disks: strong pressure inhomogeneities of 40% of amplitude, a small radial extent 15 AU, a moderate turbulence strength turb = 10 3 , and average fragmentation velocities for ices vf = 10 m s 1 .

[1]  S. Wolf,et al.  A HERSCHEL SURVEY OF COLD DUST IN DISKS AROUND BROWN DWARFS AND LOW-MASS STARS , 2012, 1206.1161.

[2]  D. Wilner,et al.  Grain growth signatures in the protoplanetary discs of Chamaeleon and Lupus , 2012, 1207.0260.

[3]  Scott J. Kenyon,et al.  Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion , 1987 .

[4]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[5]  L. Hartmann,et al.  Observations of Disks around Brown Dwarfs in the TW Hydra Association with the Spitzer Infrared Spectrograph , 2008 .

[6]  K. Keil,et al.  Protostars and Planets V , 2007 .

[7]  T. Henning,et al.  The bipolar outflow and disk of the brown dwarf ISO 217 , 2012, 1205.3166.

[8]  THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS , 2008, 0810.2552.

[9]  J. Blum,et al.  The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks , 2008 .

[10]  T. Henning,et al.  Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth , 2012, 1201.4282.

[11]  C. Dullemond,et al.  Breaking through: The effects of a velocity distribution on barriers to dust growth , 2012, 1208.0304.

[12]  T. Henning,et al.  TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETION DISKS , 2011, 1104.4565.

[13]  Michael C. Liu,et al.  A Survey for Circumstellar Disks around Young Substellar Objects , 2002, astro-ph/0210523.

[14]  The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments , 2009, 0910.4251.

[15]  R. Neri,et al.  Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths , 2009, 0912.3356.

[16]  R. Jayawardhana,et al.  Exploring brown dwarf disks : A 1.3 mm survey in taurus , 2006, astro-ph/0603619.

[17]  C. Dullemond,et al.  Gas- and dust evolution in protoplanetary disks , 2010, 1002.0335.

[18]  L. Hartmann,et al.  Hubble and Spitzer Observations of an Edge-on Circumstellar Disk around a Brown Dwarf , 2007, 0706.0279.

[19]  D. T. Jaffe,et al.  Young, Low-Mass Brown Dwarfs with Mid-Infrared Excesses , 2006, astro-ph/0602249.

[20]  The (sub-)millimeter SED of protoplanetary disks in the outskirts of the Orion nebula cluster , 2010, 1010.1677.

[21]  M. Osorio,et al.  Discovery of a brown dwarf in the Pleiades star cluster , 1995, Nature.

[22]  D. Apai,et al.  The Onset of Planet Formation in Brown Dwarf Disks , 2005, Science.

[23]  T. Henning,et al.  THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF PLANET MIGRATION IN TURBULENT STRATIFIED DISKS , 2011, 1105.2235.

[24]  L. Testi,et al.  Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks , 2010, 1006.0940.

[25]  D. Apai,et al.  STELLAR-MASS-DEPENDENT DISK STRUCTURE IN COEVAL PLANET-FORMING DISKS , 2010, 1007.3703.

[26]  A. Johansen,et al.  Dust Diffusion in Protoplanetary Disks by Magnetorotational Turbulence , 2005, astro-ph/0501641.

[27]  L. Testi,et al.  ALMA OBSERVATIONS OF ρ-Oph 102: GRAIN GROWTH AND MOLECULAR GAS IN THE DISK AROUND A YOUNG BROWN DWARF , 2012, 1211.6743.

[28]  T. Takeuchi,et al.  ELECTROSTATIC BARRIER AGAINST DUST GROWTH IN PROTOPLANETARY DISKS. II. MEASURING THE SIZE OF THE “FROZEN” ZONE , 2010, 1009.3101.

[29]  B. Ercolano,et al.  Can grain growth explain transition disks , 2012, 1206.5802.

[30]  C. Dullemond,et al.  TIME EVOLUTION OF VISCOUS CIRCUMSTELLAR DISKS DUE TO PHOTOEVAPORATION BY FAR-ULTRAVIOLET, EXTREME-ULTRAVIOLET, AND X-RAY RADIATION FROM THE CENTRAL STAR , 2009, 0909.1836.

[31]  R. Jayawardhana,et al.  Evolution of Brown Dwarf Disks: A Spitzer Survey in Upper Scorpius , 2007, astro-ph/0701703.

[32]  I. Bonnell,et al.  The formation mechanism of brown dwarfs , 2002, astro-ph/0206365.

[33]  D. Apai,et al.  First Detection of Millimeter Dust Emission from Brown Dwarf Disks , 2003, astro-ph/0307076.

[34]  J. Cuzzi,et al.  Closed-form expressions for particle relative velocities induced by turbulence , 2007, astro-ph/0702303.

[35]  L. Testi,et al.  CARMA INTERFEROMETRIC OBSERVATIONS OF 2MASS J044427+2512: THE FIRST SPATIALLY RESOLVED OBSERVATIONS OF THERMAL EMISSION OF A BROWN DWARF DISK , 2013, 1301.2624.

[36]  M. Benisty,et al.  Ring shaped dust accumulation in transition disks , 2012, 1207.6485.

[37]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[38]  Koji Wada,et al.  THE REBOUND CONDITION OF DUST AGGREGATES REVEALED BY NUMERICAL SIMULATION OF THEIR COLLISIONS , 2011 .

[39]  K. Rice,et al.  Protostars and Planets V , 2005 .

[40]  A. Morbidelli,et al.  On the width and shape of gaps in protoplanetary disks , 2006 .

[41]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[42]  J. Augereau,et al.  Structural and compositional properties of brown dwarf disks: the case of 2MASS J04442713+2512164 , 2008, 0803.2051.

[43]  C. Hayashi,et al.  Settling and growth of dust particles in a laminar phase of a low-mass solar nebula , 1986 .

[44]  S. Wolf,et al.  A HERSCHEL SEARCH FOR COLD DUST IN BROWN DWARF DISKS: FIRST RESULTS , 2011, 1110.4586.

[45]  D. Padgett,et al.  On the circum(sub)stellar environment of brown dwarfs in Taurus , 2007, astro-ph/0701251.

[46]  S. Kulkarni,et al.  Discovery of a cool brown dwarf , 1995, Nature.

[47]  B. Ercolano,et al.  The imprint of photoevaporation on edge-on discs , 2010, 1010.1079.

[48]  A. Juhász,et al.  Possible planet-forming regions on submillimetre images , 2011, 1109.6177.

[49]  Th. Henning,et al.  Large dust particles in disks around T Tauri stars , 2006 .

[50]  J. Hough,et al.  The radial distribution of dust species in young brown dwarf discs , 2011, 1111.4480.

[51]  T. Henning,et al.  Particle-Trapping Eddies in Protoplanetary Accretion Disks , 1997 .

[52]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[53]  Evidence for Circumstellar Disks around Young Brown Dwarfs in the Trapezium Cluster , 2001, astro-ph/0107458.

[54]  H. Kimura,et al.  COLLISIONAL GROWTH CONDITIONS FOR DUST AGGREGATES , 2009 .

[55]  Evidence for Mass-dependent Circumstellar Disk Evolution in the 5 Myr Old Upper Scorpius OB Association , 2006, astro-ph/0609372.

[56]  A. G. W. Cameron,et al.  Physics of the primitive solar accretion disk , 1978 .

[57]  Leiden University,et al.  ZONAL FLOWS AND LONG-LIVED AXISYMMETRIC PRESSURE BUMPS IN MAGNETOROTATIONAL TURBULENCE , 2008, 0811.3937.

[58]  L. Testi,et al.  Trapping dust particles in the outer regions of protoplanetary disks , 2011, 1112.2349.

[59]  Kastner,et al.  VLA Imaging of the Disk Surrounding the Nearby Young Star TW Hydrae. , 2000, The Astrophysical journal.

[60]  T. Henning,et al.  Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks , 2007, 0711.2192.

[61]  L. Hillenbrand,et al.  MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS , 2009, 0901.3684.

[62]  A. Youdin,et al.  Particle Stirring in Turbulent Gas Disks: Including Orbital Oscillations , 2007, 0707.2975.

[63]  C. Dullemond,et al.  The outcome of protoplanetary dust growth: pebbles, boulders or planetesimals? , 2009, 1001.0488.