Retrotransposon (Tnt1)‐Insertion Mutagenesis in Medicago as a Tool for Genetic Dissection of Symbiosis in Legumes

[1]  J. Perry,et al.  Lotus japonicus Nodulation Requires Two GRAS Domain Regulators, One of Which Is Functionally Conserved in a Non-Legume1[C][W] , 2006, Plant Physiology.

[2]  Rajasekhara Reddy Duvvuru Muni,et al.  A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation1[W][OA] , 2012, Plant Physiology.

[3]  M. Raíces,et al.  A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. , 2006, The Plant journal : for cell and molecular biology.

[4]  S. Ivashuta,et al.  RNA Interference Identifies a Calcium-Dependent Protein Kinase Involved in Medicago truncatula Root Developmentw⃞ , 2005, The Plant Cell Online.

[5]  R. Dixon,et al.  An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. , 2010, The Plant journal : for cell and molecular biology.

[6]  B. Hause,et al.  The signal peptide of the Medicago truncatula modular nodulin MtNOD25 operates as an address label for the specific targeting of proteins to nitrogen-fixing symbiosomes. , 2009, Molecular plant-microbe interactions : MPMI.

[7]  J. F. Marsh,et al.  Abscisic Acid Coordinates Nod Factor and Cytokinin Signaling during the Regulation of Nodulation in Medicago truncatula , 2008, The Plant Cell Online.

[8]  L. Schauser,et al.  LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. , 2005, The Plant journal : for cell and molecular biology.

[9]  R. Macknight,et al.  The Medicago FLOWERING LOCUS T Homolog, MtFTa1, Is a Key Regulator of Flowering Time1[C][W][OA] , 2011, Plant Physiology.

[10]  T. Bisseling,et al.  A Putative Ca2+ and Calmodulin-Dependent Protein Kinase Required for Bacterial and Fungal Symbioses , 2004, Science.

[11]  P. Gamas,et al.  A cDNA Encoding a PR-1-Like Protein in the Model Legume Medicago truncatula , 1995, Plant physiology.

[12]  Naoya Takeda,et al.  Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots , 2005, Nature.

[13]  J. F. Marsh,et al.  A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants , 2012, Current Biology.

[14]  M. Udvardi,et al.  Transport and metabolism in legume-rhizobia symbioses. , 2013, Annual review of plant biology.

[15]  Zeng-Yu Wang,et al.  Rhizobial Infection Is Associated with the Development of Peripheral Vasculature in Nodules of Medicago truncatula1[W][OA] , 2013, Plant Physiology.

[16]  P. Gamas,et al.  Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. , 1996, Molecular plant-microbe interactions : MPMI.

[17]  K. Upadhyaya,et al.  Characterization of heterogeneity in Ty1-copia group retrotransposons in chickpea (Cicer arietinum L.) , 2010, Molecular Biology.

[18]  S. Maskey,et al.  The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems , 2009, Symbiosis.

[19]  Xiaojie Chu,et al.  A Novel Interaction between CCaMK and a Protein Containing the Scythe_N Ubiquitin-Like Domain in Lotus japonicus1[C][W][OA] , 2011, Plant Physiology.

[20]  A. Kereszt,et al.  A receptor kinase gene regulating symbiotic nodule development , 2002, Nature.

[21]  M. Crespi,et al.  Enod40, a Short Open Reading Frame–Containing mRNA, Induces Cytoplasmic Localization of a Nuclear RNA Binding Protein in Medicago truncatula , 2004, The Plant Cell Online.

[22]  F. Galibert,et al.  Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Tabata,et al.  CYCLOPS, a mediator of symbiotic intracellular accommodation , 2008, Proceedings of the National Academy of Sciences.

[24]  F. Frugier,et al.  EFD Is an ERF Transcription Factor Involved in the Control of Nodule Number and Differentiation in Medicago truncatula[W] , 2008, The Plant Cell Online.

[25]  Kavitha T. Kuppusamy,et al.  Knockdown of CELL DIVISION CYCLE16 Reveals an Inverse Relationship between Lateral Root and Nodule Numbers and a Link to Auxin in Medicago truncatula1[W][OA] , 2009, Plant Physiology.

[26]  M. Udvardi,et al.  METABOLITE TRANSPORT ACROSS SYMBIOTIC MEMBRANES OF LEGUME NODULES. , 1997, Annual review of plant physiology and plant molecular biology.

[27]  P. Rougé,et al.  The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes1[W] , 2006, Plant Physiology.

[28]  P. Gamas,et al.  The Medicago truncatula MtAnn1 gene encoding an annexin is induced by Nod factors and during the symbiotic interaction with Rhizobium meliloti. , 1998, Molecular plant-microbe interactions : MPMI.

[29]  M. J. Harrison,et al.  Cellular programs for arbuscular mycorrhizal symbiosis. , 2012, Current opinion in plant biology.

[30]  D. Barker,et al.  MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins , 1998, Plant Molecular Biology.

[31]  U. Bonas,et al.  How Xanthomonas type III effectors manipulate the host plant. , 2009, Current opinion in microbiology.

[32]  Leif Schauser,et al.  A plant regulator controlling development of symbiotic root nodules , 1999, Nature.

[33]  J. Downie,et al.  LIN, a Novel Type of U-Box/WD40 Protein, Controls Early Infection by Rhizobia in Legumes1[C][W][OA] , 2009, Plant Physiology.

[34]  R. Dixon,et al.  A WD40 Repeat Protein from Medicago truncatula Is Necessary for Tissue-Specific Anthocyanin and Proanthocyanidin Biosynthesis But Not for Trichome Development1[W][OA] , 2009, Plant Physiology.

[35]  A. Good,et al.  Future Prospects for Cereals That Fix Nitrogen , 2011, Science.

[36]  D. Kahn,et al.  Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. , 2004, Molecular plant-microbe interactions : MPMI.

[37]  J. Stougaard,et al.  Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics , 1992 .

[38]  E. Journet,et al.  Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. , 1992, The Plant cell.

[39]  A. Timmers,et al.  Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. , 1999, Development.

[40]  H. Mori,et al.  Genome Structure of the Legume, Lotus japonicus , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[41]  G. Stacey,et al.  Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. , 2009, The Plant journal : for cell and molecular biology.

[42]  D. Hérouart,et al.  Crucial role of (homo)glutathione in nitrogen fixation in Medicago truncatula nodules. , 2011, The New phytologist.

[43]  G. Stacey,et al.  Complete Transcriptome of the Soybean Root Hair Cell, a Single-Cell Model, and Its Alteration in Response to Bradyrhizobium japonicum Infection1[C][W][OA] , 2009, Plant Physiology.

[44]  B. Horváth,et al.  Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. , 2011, Molecular plant-microbe interactions : MPMI.

[45]  H. Kouchi,et al.  LjnsRING, a novel RING finger protein, is required for symbiotic interactions between Mesorhizobium loti and Lotus japonicus. , 2006, Plant & cell physiology.

[46]  M. Crespi,et al.  The Medicago truncatula CRE1 Cytokinin Receptor Regulates Lateral Root Development and Early Symbiotic Interaction with Sinorhizobium meliloti[W] , 2006, The Plant Cell Online.

[47]  F. Dazzo,et al.  Nodule Organogenesis and Symbiotic Mutants of the Model Legume Lotus japonicus , 1998 .

[48]  K. Mysore,et al.  Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. , 2005, Trends in plant science.

[49]  J. Frugoli,et al.  RNAi Phenotypes and the Localization of a Protein::GUS Fusion Imply a Role for Medicago truncatula PIN Genes in Nodulation , 2006, Journal of Plant Growth Regulation.

[50]  T. Bisseling,et al.  NSP1 of the GRAS Protein Family Is Essential for Rhizobial Nod Factor-Induced Transcription , 2005, Science.

[51]  P. Gresshoff,et al.  Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[52]  L. Tirichine,et al.  MERE1, a Low-Copy-Number Copia-Type Retroelement in Medicago truncatula Active during Tissue Culture1[C][W] , 2009, Plant Physiology.

[53]  P. Larkin,et al.  Somaclonal variation — a novel source of variability from cell cultures for plant improvement , 1981, Theoretical and Applied Genetics.

[54]  S. Tabata,et al.  The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. , 2012, Plant & cell physiology.

[55]  Bogumil J. Karas,et al.  A Cytokinin Perception Mutant Colonized by Rhizobium in the Absence of Nodule Organogenesis , 2007, Science.

[56]  A. Jauneau,et al.  The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection , 2008, Proceedings of the National Academy of Sciences.

[57]  D. Cook,et al.  Medicago truncatula--a model in the making! , 1999, Current opinion in plant biology.

[58]  Colby G Starker,et al.  Conservation in function of a SCAR/WAVE component during infection thread and root hair growth in Medicago truncatula. , 2010, Molecular plant-microbe interactions : MPMI.

[59]  E. Kondorosi,et al.  T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery , 2002, Molecular Breeding.

[60]  P. Gamas,et al.  MtbHLH1, a bHLH transcription factor involved in Medicago truncatula nodule vascular patterning and nodule to plant metabolic exchanges , 2011, The New phytologist.

[61]  F. Ariel,et al.  Two Direct Targets of Cytokinin Signaling Regulate Symbiotic Nodulation in Medicago truncatula[W][OA] , 2012, Plant Cell.

[62]  S. Tabata,et al.  The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules , 2005, The Plant Cell Online.

[63]  T. Soyano,et al.  NODULE INCEPTION Directly Targets NF-Y Subunit Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus , 2013, PLoS genetics.

[64]  David Vaughan,et al.  Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. , 2011, The Plant journal : for cell and molecular biology.

[65]  Satoshi Tabata,et al.  Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development , 2006, Nature.

[66]  J. F. Marsh,et al.  Medicago truncatula NIN Is Essential for Rhizobial-Independent Nodule Organogenesis Induced by Autoactive Calcium/Calmodulin-Dependent Protein Kinase1 , 2007, Plant Physiology.

[67]  Mikiko Abe,et al.  Plant Peptides Govern Terminal Differentiation of Bacteria in Symbiosis , 2010, Science.

[68]  Rex T. Nelson,et al.  RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome , 2010, BMC Plant Biology.

[69]  T. Bisseling,et al.  Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation , 2012, Proceedings of the National Academy of Sciences.

[70]  Kathryn VandenBosch,et al.  An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction[W] , 2007, The Plant Cell Online.

[71]  C. Ritzenthaler,et al.  A Novel Type of Thioredoxin Dedicated to Symbiosis in Legumes1[W][OA] , 2008, Plant Physiology.

[72]  K. Mysore,et al.  Tnt1 Induced Mutations in Medicago: Characterization and Applications , 2010 .

[73]  Cara H. Haney,et al.  Plant flotillins are required for infection by nitrogen-fixing bacteria , 2009, Proceedings of the National Academy of Sciences.

[74]  R. Shoemaker,et al.  Establishment of a soybean (Glycine max Merr. L) transposon-based mutagenesis repository , 2008, Planta.

[75]  Jonathan D. G. Jones,et al.  The maize transposable element Ac is mobile in the legume Lotus japonicus , 1995, Plant Molecular Biology.

[76]  J. Cullimore,et al.  Nodule-Specific Modulation of Glutamine Synthetase in Transgenic Medicago truncatula Leads to Inverse Alterations in Asparagine Synthetase Expression1 , 2003, Plant Physiology.

[77]  S. Masiero,et al.  The non-specific lipid transfer protein N5 of Medicago truncatula is implicated in epidermal stages of rhizobium-host interaction , 2012, BMC Plant Biology.

[78]  S. Tabata,et al.  NENA, a Lotus japonicus Homolog of Sec13, Is Required for Rhizodermal Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable for Cortical Endosymbiotic Development[C][W] , 2010, Plant Cell.

[79]  J. Hofer,et al.  NODULE ROOT and COCHLEATA Maintain Nodule Development and Are Legume Orthologs of Arabidopsis BLADE-ON-PETIOLE Genes[W][OA] , 2012, Plant Cell.

[80]  G. Weiller,et al.  A gene expression atlas of the model legume Medicago truncatula. , 2008, The Plant journal : for cell and molecular biology.

[81]  Feng Zhang,et al.  Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases1[W][OA] , 2011, Plant Physiology.

[82]  Tao Chen,et al.  A MAP Kinase Kinase Interacts with SymRK and Regulates Nodule Organogenesis in Lotus japonicus[C][W] , 2012, Plant Cell.

[83]  M. J. Harrison,et al.  Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. , 1998, Molecular plant-microbe interactions : MPMI.

[84]  E. Danchin,et al.  A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning , 2011, The New phytologist.

[85]  S. Tabata,et al.  A Novel Ankyrin-Repeat Membrane Protein, IGN1, Is Required for Persistence of Nitrogen-Fixing Symbiosis in Root Nodules of Lotus japonicus1[OA] , 2007, Plant Physiology.

[86]  A. Edwards,et al.  Legume pectate lyase required for root infection by rhizobia , 2011, Proceedings of the National Academy of Sciences.

[87]  M. Holsters,et al.  Nod factor structures, responses, and perception during initiation of nodule development. , 2002, Glycobiology.

[88]  E. Journet,et al.  Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. , 2001, Molecular plant-microbe interactions : MPMI.

[89]  R. Dickstein,et al.  An IRE-Like AGC Kinase Gene, MtIRE, Has Unique Expression in the Invasion Zone of Developing Root Nodules in Medicago truncatula1[OA] , 2007, Plant Physiology.

[90]  K. Mysore,et al.  Reverse genetics in medicago truncatula using Tnt1 insertion mutants. , 2011, Methods in molecular biology.

[91]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[92]  Yan Liang,et al.  A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. , 2010, The Plant journal : for cell and molecular biology.

[93]  J. F. Marsh,et al.  The ROOT DETERMINED NODULATION1 Gene Regulates Nodule Number in Roots of Medicago truncatula and Defines a Highly Conserved, Uncharacterized Plant Gene Family1[C][W][OA] , 2011, Plant Physiology.

[94]  S. Tabata,et al.  A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[95]  K. Mysore,et al.  Control of Compound Leaf Development by FLORICAULA/LEAFY Ortholog SINGLE LEAFLET1 in Medicago truncatula1[C][W][OA] , 2008, Plant Physiology.

[96]  Jean-Michel Ané,et al.  3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase1 Interacts with NORK and Is Crucial for Nodulation in Medicago truncatula , 2007, The Plant Cell Online.

[97]  M. J. Harrison,et al.  A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis , 2007, Proceedings of the National Academy of Sciences.

[98]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[99]  T. Bisseling,et al.  Nodulin Gene Expression and ENOD2 Localization in Effective, Nitrogen-Fixing and Ineffective, Bacteria-Free Nodules of Alfalfa. , 1990, The Plant cell.

[100]  Juan Zhang,et al.  Flavone Synthases from Medicago truncatula Are Flavanone-2-Hydroxylases and Are Important for Nodulation1[W][OA] , 2007, Plant Physiology.

[101]  Derin B. Wysham,et al.  Nuclear membranes control symbiotic calcium signaling of legumes , 2011, Proceedings of the National Academy of Sciences.

[102]  S. Tabata,et al.  Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases , 2003, Nature.

[103]  L. Deslandes,et al.  The Medicago truncatula E3 Ubiquitin Ligase PUB1 Interacts with the LYK3 Symbiotic Receptor and Negatively Regulates Infection and Nodulation[W][OA] , 2010, Plant Cell.

[104]  B. Roe,et al.  Medicago truncatula DMI1 Required for Bacterial and Fungal Symbioses in Legumes , 2004, Science.

[105]  Martin Parniske,et al.  A TILLING Reverse Genetics Tool and a Web-Accessible Collection of Mutants of the Legume Lotus japonicus 1 , 2003, Plant Physiology.

[106]  N. Young,et al.  Fine-Scale Population Recombination Rates, Hotspots, and Correlates of Recombination in the Medicago truncatula Genome , 2012, Genome biology and evolution.

[107]  Patrick X Zhao,et al.  Large-scale Insertional Mutagenesis Using the Tnt1 Retrotransposon in the Model Legume Medicago Truncatula , 2007 .

[108]  Richard D. Thompson,et al.  Optimizing TILLING populations for reverse genetics in Medicago truncatula. , 2009, Plant biotechnology journal.

[109]  Tao Chen,et al.  Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicus , 2013, Plant Molecular Biology.

[110]  S. Mongrand,et al.  A remorin protein interacts with symbiotic receptors and regulates bacterial infection , 2010, Proceedings of the National Academy of Sciences.

[111]  T. Huguet,et al.  TE7, An Inefficient Symbiotic Mutant of Medicago truncatula Gaertn. cv Jemalong , 1995, Plant physiology.

[112]  D. Cook,et al.  Production and characterization of diverse developmental mutants of Medicago truncatula. , 2000, Plant physiology.

[113]  S. Long,et al.  Plant and Bacterial Symbiotic Mutants Define Three Transcriptionally Distinct Stages in the Development of the Medicago truncatula/Sinorhizobium meliloti Symbiosis1 , 2004, Plant Physiology.

[114]  J. Willemse,et al.  LysM Domain Receptor Kinases Regulating Rhizobial Nod Factor-Induced Infection , 2003, Science.

[115]  S. Long,et al.  Nitrogen Fixation Mutants of Medicago truncatula Fail to Support Plant and Bacterial Symbiotic Gene Expression1[W][OA] , 2006, Plant Physiology.

[116]  Kun Xu,et al.  The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. , 2008, The Plant journal : for cell and molecular biology.

[117]  P. Gamas,et al.  Symbiosis-specific expression of two Medicago truncatula nodulin genes, MtN1 and MtN13, encoding products homologous to plant defense proteins. , 1998, Molecular plant-microbe interactions : MPMI.

[118]  E. Blancaflor,et al.  From Model to Crop: Functional Analysis of a STAY-GREEN Gene in the Model Legume Medicago truncatula and Effective Use of the Gene for Alfalfa Improvement1[W][OA] , 2011, Plant Physiology.

[119]  T. Bisseling,et al.  Medicago LYK3, an Entry Receptor in Rhizobial Nodulation Factor Signaling1[W] , 2007, Plant Physiology.

[120]  Gary Stacey,et al.  Tnt1 Retrotransposon Mutagenesis: A Tool for Soybean Functional Genomics1[W][OA] , 2012, Plant Physiology.

[121]  A. Barsch,et al.  Antisense Repression of the Medicago truncatula Nodule-Enhanced Sucrose Synthase Leads to a Handicapped Nitrogen Fixation Mirrored by Specific Alterations in the Symbiotic Transcriptome and Metabolome1[W] , 2007, Plant Physiology.

[122]  T. Bisseling,et al.  Medicago N2-Fixing Symbiosomes Acquire the Endocytic Identity Marker Rab7 but Delay the Acquisition of Vacuolar Identity[W] , 2009, The Plant Cell Online.

[123]  M. Crespi,et al.  MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. , 2006, Genes & development.

[124]  A. Jauneau,et al.  AP2-ERF Transcription Factors Mediate Nod Factor–Dependent Mt ENOD11 Activation in Root Hairs via a Novel cis-Regulatory Motif[W] , 2007, The Plant Cell Online.

[125]  A. Eschstruth,et al.  Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. , 2003, The Plant journal : for cell and molecular biology.

[126]  D. Barker,et al.  Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1 , 2003, Plant Cell Reports.

[127]  E. Journet,et al.  Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. , 2008, Molecular plant-microbe interactions : MPMI.

[128]  E. Kondorosi,et al.  Cell Biology Of Nodule Infection And Development , 2008 .

[129]  S. Tabata,et al.  NUCLEOPORIN85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus , 2007, The Plant Cell Online.

[130]  A. Kondorosi,et al.  The low level of activity of Arabidopsis thaliana Tag1 transposon correlates with the absence of two minor transcripts in Medicago truncatula , 2006, Molecular Breeding.

[131]  T. Bisseling,et al.  Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. , 2007, Journal of experimental botany.

[132]  P. Durand,et al.  Osmotic shock improves Tnt1 transposition frequency in Medicago truncatula cv Jemalong during in vitro regeneration , 2009, Plant Cell Reports.

[133]  S. Yoshida,et al.  Lotus japonicus E3 Ligase SEVEN IN ABSENTIA4 Destabilizes the Symbiosis Receptor-Like Kinase SYMRK and Negatively Regulates Rhizobial Infection[C][W] , 2012, Plant Cell.

[134]  Dongxue Li,et al.  Inactivation of duplicated nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). , 2010, Plant & cell physiology.

[135]  S. Tabata,et al.  A Positive Regulatory Role for LjERF1 in the Nodulation Process Is Revealed by Systematic Analysis of Nodule-Associated Transcription Factors of Lotus japonicus1[W] , 2008, Plant Physiology.

[136]  Jean Dénarié,et al.  Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza , 2011, Nature.

[137]  S. Tabata,et al.  Title LjMATE1: a citrate transporter responsible for iron supply to the nodule infection zone of Lotus japonicus , 2016 .

[138]  M. Hossain,et al.  Rearrangement of Actin Cytoskeleton Mediates Invasion of Lotus japonicus Roots by Mesorhizobium loti[C][W] , 2009, The Plant Cell Online.

[139]  S. Tabata,et al.  The SNARE Protein SYP71 Expressed in Vascular Tissues Is Involved in Symbiotic Nitrogen Fixation in Lotus japonicus Nodules1[W][OA] , 2012, Plant Physiology.

[140]  R. C. Wilson,et al.  A new proline-rich early nodulin from Medicago truncatula is highly expressed in nodule meristematic cells. , 1994, The Plant cell.

[141]  A. Puppo,et al.  MtNOA1/RIF1 modulates Medicago truncatula-Sinorhizobium meliloti nodule development without affecting its nitric oxide content. , 2011, Journal of experimental botany.

[142]  S. Tabata,et al.  CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis. , 2009, The Plant journal : for cell and molecular biology.

[143]  N. Young,et al.  Genome-enabled insights into legume biology. , 2012, Annual review of plant biology.

[144]  R. Dickstein,et al.  Purification of ENOD8 proteins from Medicago sativa root nodules and their characterization as esterases. , 2004, Plant physiology and biochemistry : PPB.

[145]  C. Charon,et al.  Analysis of Medicago truncatula nodule expressed sequence tags. , 2000, Molecular plant-microbe interactions : MPMI.

[146]  S. Tabata,et al.  TILLING Mutants of Lotus japonicus Reveal That Nitrogen Assimilation and Fixation Can Occur in the Absence of Nodule-Enhanced Sucrose Synthase[C][W] , 2007, Plant Physiology.

[147]  D. Cook,et al.  Gene Structure and Differential Regulation of the Rhizobium-Induced Peroxidase Gene rip1 , 1996, Plant physiology.

[148]  M. Udvardi,et al.  Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. , 2013, The New phytologist.

[149]  Julia Frugoli,et al.  The Medicago truncatula SUNN Gene Encodes a CLV1-like Leucine-rich Repeat Receptor Kinase that Regulates Nodule Number and Root Length , 2005, Plant Molecular Biology.

[150]  M. Crespi,et al.  A novel RNA-binding peptide regulates the establishment of the Medicago truncatula-Sinorhizobium meliloti nitrogen-fixing symbiosis. , 2010, The Plant journal : for cell and molecular biology.

[151]  P. Gamas,et al.  The MtMMPL1 Early Nodulin Is a Novel Member of the Matrix Metalloendoproteinase Family with a Role in Medicago truncatula Infection by Sinorhizobium meliloti1[W][OA] , 2007, Plant Physiology.

[152]  G. Bai,et al.  Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume Medicago truncatula , 2010, Proceedings of the National Academy of Sciences.

[153]  L. Sumner,et al.  STENOFOLIA Regulates Blade Outgrowth and Leaf Vascular Patterning in Medicago truncatula and Nicotiana sylvestris[C][W][OA] , 2011, Plant Cell.

[154]  H. Okamoto,et al.  Efficient insertion mutagenesis of Arabidopsis by tissue culture-induced activation of the tobacco retrotransposon Tto1. , 2000, The Plant journal : for cell and molecular biology.

[155]  A. Levine,et al.  Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. , 2007, Journal of experimental botany.

[156]  J. F. Marsh,et al.  Nodulation Signaling in Legumes Requires NSP2, a Member of the GRAS Family of Transcriptional Regulators , 2005, Science.

[157]  M. J. Harrison,et al.  Closely Related Members of the Medicago truncatula PHT1 Phosphate Transporter Gene Family Encode Phosphate Transporters with Distinct Biochemical Activities* , 2008, Journal of Biological Chemistry.

[158]  T. Bisseling,et al.  A Phylogenetic Strategy Based on a Legume-Specific Whole Genome Duplication Yields Symbiotic Cytokinin Type-A Response Regulators1[C][W][OA] , 2011, Plant Physiology.

[159]  Colby G Starker,et al.  A Nodule-Specific Protein Secretory Pathway Required for Nitrogen-Fixing Symbiosis , 2010, Science.

[160]  N. J. Brewin,et al.  Plant Cell Wall Remodelling in the Rhizobium–Legume Symbiosis , 2004 .

[161]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[162]  Yuhong Tang,et al.  Establishment of the Lotus japonicus Gene Expression Atlas (LjGEA) and its use to explore legume seed maturation. , 2013, The Plant journal : for cell and molecular biology.

[163]  G. Duc,et al.  Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn.) after γ-ray mutagenesis , 1995 .