A regularity structure for rough volatility

A new paradigm has emerged recently in financial modeling: rough (stochastic) volatility. First observed by Gatheral et al. in high‐frequency data, subsequently derived within market microstructure models, rough volatility captures parsimoniously key‐stylized facts of the entire implied volatility surface, including extreme skews (as observed earlier by Alòs et al.) that were thought to be outside the scope of stochastic volatility models. On the mathematical side, Markovianity and, partially, semimartingality are lost. In this paper, we show that Hairer's regularity structures, a major extension of rough path theory, which caused a revolution in the field of stochastic partial differential equations, also provide a new and powerful tool to analyze rough volatility models.

[1]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[2]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[3]  David Nualart,et al.  Stochastic calculus with anticipating integrands , 1988 .

[4]  Philip Protter,et al.  Stochastic Volterra Equations with Anticipating Coefficients , 1990 .

[5]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[6]  Y. Meyer Wavelets and Operators , 1993 .

[7]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[8]  David Nualart Rodón,et al.  GAUSSIAN HILBERT SPACES (Cambridge Tracts in Mathematics 129) By SVANTE JANSON: 340 pp., £40.00, ISBN 0 521 56128 0 (Cambridge University Press, 1997) , 1998 .

[9]  D. Nualart GAUSSIAN HILBERT SPACES (Cambridge Tracts in Mathematics 129) By SVANTE JANSON: 340 pp., £40.00, ISBN 0 521 56128 0 (Cambridge University Press, 1997) , 1998 .

[10]  P. Glasserman,et al.  A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .

[11]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[12]  Stochastic Volterra Equations with Singular Kernels , 2001 .

[13]  S. Kusuoka Approximation of Expectation of Diffusion Process and Mathematical Finance , 2001 .

[14]  Peter K. Friz,et al.  Application of large deviation methods to the pricing of index options in finance , 2003 .

[15]  Terry Lyons,et al.  Cubature on Wiener space , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  H. Berestycki,et al.  Computing the implied volatility in stochastic volatility models , 2004 .

[17]  S. Ninomiya,et al.  Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing , 2006, math/0605361.

[18]  M. Gubinelli Ramification of rough paths , 2006 .

[19]  D. Nualart,et al.  Fractional Brownian motion , 2006 .

[20]  Jim Gatheral The Volatility Surface: A Practitioner's Guide , 2006 .

[21]  Jorge A. León,et al.  On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility , 2006, Finance Stochastics.

[22]  Mark H. A. Davis,et al.  Negative Libor rates in the swap market model , 2007, Finance Stochastics.

[23]  Masaaki Fukasawa,et al.  Asymptotic analysis for stochastic volatility: martingale expansion , 2011, Finance Stochastics.

[24]  Martin Hairer Solving the KPZ equation , 2011, 1109.6811.

[25]  Convergence rates for the full Brownian rough paths with applications to limit theorems for stochastic flows , 2011 .

[26]  Antoine Jacquier,et al.  Marginal Density Expansions for Diffusions and Stochastic Volatility I: Theoretical Foundations , 2011, 1111.2462.

[27]  Peter Tankov,et al.  A New Look at Short‐Term Implied Volatility in Asset Price Models with Jumps , 2012 .

[28]  F. Comte,et al.  Affine fractional stochastic volatility models , 2012 .

[29]  Martin Hairer,et al.  Geometric versus non-geometric rough paths , 2012, 1210.6294.

[30]  Martin Hairer,et al.  A Course on Rough Paths: With an Introduction to Regularity Structures , 2014 .

[31]  Martin Hairer,et al.  The Dynamical Sine-Gordon Model , 2014 .

[32]  Martin Hairer,et al.  A theory of regularity structures , 2013, 1303.5113.

[33]  Martin Hairer,et al.  A Course on Rough Paths , 2020, Universitext.

[34]  Christian Bayer,et al.  Asymptotics Beats Monte Carlo: The Case of Correlated Local Vol Baskets , 2014 .

[35]  Martin Hairer Introduction to regularity structures , 2014, Universitext.

[36]  Martin Hairer,et al.  A Wong-Zakai theorem for stochastic PDEs , 2014, Journal of the Mathematical Society of Japan.

[37]  Antoine Jacquier,et al.  Marginal Density Expansions for Diffusions and Stochastic Volatility II: Applications , 2014 .

[38]  J. Bell Gaussian Hilbert spaces , 2015 .

[39]  Martin Hairer,et al.  Large deviations for white-noise driven, nonlinear stochastic PDEs in two and three dimensions , 2014, 1404.5863.

[40]  M. Fukasawa Short-time at-the-money skew and rough fractional volatility , 2015, 1501.06980.

[41]  Jim Gatheral,et al.  Pricing under rough volatility , 2016 .

[42]  Martin Hairer,et al.  An analytic BPHZ theorem for regularity structures , 2016, 1612.08138.

[43]  Andreas Neuenkirch,et al.  The Order Barrier for Strong Approximation of Rough Volatility Models , 2016 .

[44]  M. Rosenbaum,et al.  The characteristic function of rough Heston models , 2016, 1609.02108.

[45]  Peter W. Jones,et al.  A multiscale guide to Brownian motion , 2015, 1505.04525.

[46]  Mikko S. Pakkanen,et al.  Decoupling the Short- and Long-Term Behavior of Stochastic Volatility , 2016, Journal of Financial Econometrics.

[47]  Sebastian Riedel,et al.  From Rough Path Estimates to Multilevel Monte Carlo , 2013, SIAM J. Numer. Anal..

[48]  S. Riedel,et al.  The Jain–Monrad criterion for rough paths and applications to random Fourier series and non-Markovian Hörmander theory , 2013, 1307.3460.

[49]  Hongzhong Zhang,et al.  Asymptotics for Rough Stochastic Volatility Models , 2017, SIAM J. Financial Math..

[50]  E. Alòs,et al.  A fractional Heston model with , 2017 .

[51]  Mathieu Rosenbaum,et al.  Perfect hedging in rough Heston models , 2017, The Annals of Applied Probability.

[52]  Archil Gulisashvili,et al.  Large Deviation Principle for Volterra Type Fractional Stochastic Volatility Models , 2017, SIAM J. Financial Math..

[53]  M. Rosenbaum,et al.  Volatility is rough , 2018 .

[54]  C. Bayer,et al.  Short-time near-the-money skew in rough fractional volatility models , 2017, Quantitative Finance.

[55]  Mathieu Rosenbaum,et al.  The microstructural foundations of leverage effect and rough volatility , 2018, Finance Stochastics.

[56]  S. Gerhold,et al.  Option pricing in the moderate deviations regime , 2016, Mathematical finance.

[57]  Precise asymptotics: Robust stochastic volatility models , 2018, 1811.00267.

[58]  Martin Hairer,et al.  Algebraic renormalisation of regularity structures , 2016, Inventiones mathematicae.

[59]  Antoine Jacquier,et al.  Pathwise large deviations for the rough Bergomi model , 2017, Journal of Applied Probability.

[60]  I. Chevyrev,et al.  A rough path perspective on renormalization , 2017, Journal of Functional Analysis.