Proteomic identification of gender molecular markers in Bothrops jararaca venom.

[1]  J. Calvete,et al.  Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest. , 2016, Journal of proteomics.

[2]  P. Ho,et al.  Venom-Related Transcripts from Bothrops jararaca Tissues Provide Novel Molecular Insights into the Production and Evolution of Snake Venom , 2014, Molecular biology and evolution.

[3]  S. Serrano,et al.  The proteinase-rich proteome of Bothrops jararaca venom , 2014 .

[4]  S. Serrano,et al.  Proteoforms of the platelet-aggregating enzyme PA-BJ, a serine proteinase from Bothrops jararaca venom. , 2014, Biochimica et biophysica acta.

[5]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[6]  J. Calvete,et al.  Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms , 2014, Proceedings of the National Academy of Sciences.

[7]  J. Logan,et al.  The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system , 2013, Proceedings of the National Academy of Sciences.

[8]  S. Serrano,et al.  Individual variability in the venom proteome of juvenile Bothrops jararaca specimens. , 2013, Journal of proteome research.

[9]  Michael G. Sovic,et al.  Phylogeny-Based Comparative Analysis of Venom Proteome Variation in a Clade of Rattlesnakes (Sistrurus sp.) , 2013, PloS one.

[10]  Nicholas R Casewell,et al.  Complex cocktails: the evolutionary novelty of venoms. , 2013, Trends in ecology & evolution.

[11]  S. Serrano The long road of research on snake venom serine proteinases. , 2013, Toxicon : official journal of the International Society on Toxinology.

[12]  Jürgen Cox,et al.  A systematic investigation into the nature of tryptic HCD spectra. , 2012, Journal of proteome research.

[13]  A. C. Schenberg,et al.  Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and Peptidomes* , 2012, Molecular & Cellular Proteomics.

[14]  P. Ho,et al.  A Transcriptomic View of the Proteome Variability of Newborn and Adult Bothrops jararaca Snake Venoms , 2012, PLoS neglected tropical diseases.

[15]  V. Reinhold,et al.  N-glycome profiling of Bothrops jararaca newborn and adult venoms. , 2012, Journal of proteomics.

[16]  G. Huttley,et al.  Dynamic evolution of venom proteins in squamate reptiles , 2012, Nature Communications.

[17]  J. Fox,et al.  Bothrops jararaca venom proteome rearrangement upon neonate to adult transition , 2011, Proteomics.

[18]  Christopher M Overall,et al.  Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates , 2011, Nature Protocols.

[19]  M. Mann,et al.  More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. , 2011, Journal of proteome research.

[20]  M. L. Santoro,et al.  Comparative analysis of newborn and adult Bothrops jararaca snake venoms. , 2010, Toxicon : official journal of the International Society on Toxinology.

[21]  R. Kini,et al.  Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. , 2010, Toxicon : official journal of the International Society on Toxinology.

[22]  F. França,et al.  Comparison of Bothropoides jararaca bites with and without envenoming treated at the Vital Brazil Hospital of the Butantan Institute, State of São Paulo, Brazil. , 2010, Revista da Sociedade Brasileira de Medicina Tropical.

[23]  A. Nesvizhskii A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. , 2010, Journal of proteomics.

[24]  P. Ho,et al.  Analysis of the ontogenetic variation in the venom proteome/peptidome of Bothrops jararaca reveals different strategies to deal with prey. , 2010, Journal of proteome research.

[25]  W. Wüster,et al.  Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution , 2009, Proceedings of the Royal Society B: Biological Sciences.

[26]  Dan Golick,et al.  Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures , 2009, Proteomics.

[27]  J. Fox,et al.  Analysis of the subproteomes of proteinases and heparin‐binding toxins of eight Bothrops venoms , 2009, Proteomics.

[28]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[29]  J. Fox,et al.  Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity , 2008, The FEBS journal.

[30]  R. Stöcklin,et al.  High throughput screening of bradykinin-potentiating peptides in Bothrops moojeni snake venom using precursor ion mass spectrometry. , 2008, Toxicon : official journal of the International Society on Toxinology.

[31]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[32]  S. Serrano,et al.  Mass spectrometric analysis of the individual variability of Bothrops jararaca venom peptide fraction. Evidence for sex-based variation among the bradykinin-potentiating peptides. , 2007, Rapid communications in mass spectrometry : RCM.

[33]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[34]  R. Shine,et al.  Lizard Ecology: Why is intraspecific niche partitioning more common in snakes than in lizards? , 2007 .

[35]  M. Lavin,et al.  Post‐translational modification accounts for the presence of varied forms of nerve growth factor in Australian elapid snake venoms , 2006, Proteomics.

[36]  A. M. Dávila,et al.  Bothrops jararaca venom gland transcriptome: analysis of the gene expression pattern. , 2006, Toxicon : official journal of the International Society on Toxinology.

[37]  M. Furtado,et al.  Sexual dimorphism in venom of Bothrops jararaca(Serpentes: Viperidae). , 2006, Toxicon : official journal of the International Society on Toxinology.

[38]  S. Serrano,et al.  Sex-based individual variation of snake venom proteome among eighteen Bothrops jararaca siblings. , 2006, Toxicon : official journal of the International Society on Toxinology.

[39]  M. Lavin,et al.  Molecular Diversity in Venom from the Australian Brown Snake, Pseudonaja textilis*S , 2006, Molecular & Cellular Proteomics.

[40]  Alexey I Nesvizhskii,et al.  Interpretation of Shotgun Proteomic Data , 2005, Molecular & Cellular Proteomics.

[41]  R. Maroun,et al.  Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. , 2005, Toxicon : official journal of the International Society on Toxinology.

[42]  J. Fox,et al.  Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. , 2005, Toxicon : official journal of the International Society on Toxinology.

[43]  A. Camargo,et al.  The Bradykinin-potentiating peptides from venom gland and brain of Bothrops jararaca contain highly site specific inhibitors of the somatic angiotensin-converting enzyme. , 2005, Toxicon : official journal of the International Society on Toxinology.

[44]  F. Markland,et al.  Snake venom fibrin(ogen)olytic enzymes. , 2005, Toxicon : official journal of the International Society on Toxinology.

[45]  T. Morita Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. , 2005, Toxicon : official journal of the International Society on Toxinology.

[46]  J. Calvete,et al.  Snake venom disintegrins: evolution of structure and function. , 2005, Toxicon : official journal of the International Society on Toxinology.

[47]  Daniel Carvalho Pimenta,et al.  Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography , 2004, Peptides.

[48]  Shui-Tein Chen,et al.  Analysis of lectin-bound glycoproteins in snake venom from the Elapidae and Viperidae families. , 2004, Journal of proteome research.

[49]  R. Kini,et al.  Eggs-Only Diet: Its Implications for the Toxin Profile Changes and Ecology of the Marbled Sea Snake (Aipysurus eydouxii) , 2004, Journal of Molecular Evolution.

[50]  S. Mackessy,et al.  Ontogenetic Variation in Venom Composition and Diet of Crotalus oreganus concolor: A Case of Venom Paedomorphosis? , 2003, Copeia.

[51]  M. Ohno,et al.  Molecular evolution of myotoxic phospholipases A2 from snake venom. , 2003, Toxicon : official journal of the International Society on Toxinology.

[52]  V. Dive,et al.  The C‐type natriuretic peptide precursor of snake brain contains highly specific inhibitors of the angiotensin‐converting enzyme , 2003, Journal of neurochemistry.

[53]  R. Shine,et al.  Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata) , 2002 .

[54]  R. Shine,et al.  Sexual divergence in diets and morphology in Fijian sea snakes Laticauda colubrina (Laticaudinae) , 2002 .

[55]  J. Goldberg,et al.  Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. , 2000, Microbiology.

[56]  D. Andrade,et al.  RELATIONSHIP OF VENOM ONTOGENY AND DIET IN BOTHROPS , 1999 .

[57]  A. Bergh,et al.  Testosterone induces vascular endothelial growth factor synthesis in the ventral prostate in castrated rats. , 1999, The Journal of urology.

[58]  T. Yamane,et al.  Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Y. Shimohigashi,et al.  Accelerated evolution of crotalinae snake venom gland serine proteases , 1996, FEBS letters.

[60]  A. Forsman Body Size and Net Energy Gain in Gape-limited Predators: A Model , 1996 .

[61]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[62]  J. Daltry,et al.  Diet and snake venom evolution , 1996, Nature.

[63]  A. Forsman,et al.  The advantage of a big head: swallowing performance in adders, Vipera berus (L.) , 1993 .

[64]  R. Shine Intersexual Dietary Divergence and the Evolution of Sexual Dimorphism in Snakes , 1991, The American Naturalist.

[65]  A. Forsman Variation in sexual size dimorphism and maximum body size among adder populations : Effects of prey size , 1991 .

[66]  M. Furtado,et al.  Comparative study of nine Bothrops snake venoms from adult female snakes and their offspring. , 1991, Toxicon : official journal of the International Society on Toxinology.

[67]  W. Lamar,et al.  Venomous Reptiles of Latin America , 1989 .

[68]  S. Mackessy Venom ontogeny in the Pacific rattlesnakes Crotalus viridis helleri and C. v. oreganus , 1988 .

[69]  H. Thoenen,et al.  Physiology of nerve growth factor. , 1980, Physiological reviews.

[70]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[71]  S. Ferreira A Bradykinin-Potentiating Factor (BPF) present in the Venom of Bothrops jararaca. , 1965 .