The Birnavirus Crystal Structure Reveals Structural Relationships among Icosahedral Viruses

[1]  J. Castón,et al.  The C-terminal domain of the pVP2 precursor is essential for the interaction between VP2 and VP3, the capsid polypeptides of infectious bursal disease virus. , 2004, Virology.

[2]  J. Lepault,et al.  The Last C-Terminal Residue of VP3, Glutamic Acid 257, Controls Capsid Assembly of Infectious Bursal Disease Virus , 2004, Journal of Virology.

[3]  John E. Johnson,et al.  The refined structure of Nudaurelia capensis omega virus reveals control elements for a T = 4 capsid maturation. , 2004, Virology.

[4]  M. Islam,et al.  Research on infectious bursal disease--the past, the present and the future. , 2003, Veterinary microbiology.

[5]  Yasuo Watanabe,et al.  The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. , 2003, Structure.

[6]  Xavier Robert,et al.  ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins , 2003, Nucleic Acids Res..

[7]  C. Cameron,et al.  The Palm Subdomain-based Active Site is Internally Permuted in Viral RNA-dependent RNA Polymerases of an Ancient Lineage , 2002, Journal of Molecular Biology.

[8]  John E. Johnson,et al.  L-A virus at 3.4 Å resolution reveals particle architecture and mRNA decapping mechanism , 2002, Nature Structural Biology.

[9]  J. Lepault,et al.  Electronic Reprint Biological Crystallography on the Fitting of Model Electron Densities into Em Reconstructions: a Reciprocal-space Formulation , 2022 .

[10]  John E. Johnson,et al.  Virus-Like Particles of a Fish Nodavirus Display a Capsid Subunit Domain Organization Different from That of Insect Nodaviruses , 2002, Journal of Virology.

[11]  D. Stuart,et al.  Evolution of viral structure. , 2002, Theoretical population biology.

[12]  J. Lepault,et al.  The Capsid of Infectious Bursal Disease Virus Contains Several Small Peptides Arising from the Maturation Process of pVP2 , 2002, Journal of Virology.

[13]  J. Lepault,et al.  The Maturation Process of pVP2 Requires Assembly of Infectious Bursal Disease Virus Capsids , 2002, Journal of Virology.

[14]  Kartik Chandran,et al.  Structure of the Reovirus Membrane-Penetration Protein, μ1, in a Complex with Its Protector Protein, σ3 , 2002, Cell.

[15]  D. Stuart,et al.  Translocation portals for the substrates and products of a viral transcription complex: the bluetongue virus core , 2001, The EMBO journal.

[16]  R. Heckert,et al.  Molecular Determinants of Virulence, Cell Tropism, and Pathogenic Phenotype of Infectious Bursal Disease Virus , 2001, Journal of Virology.

[17]  T. Terwilliger Maximum-likelihood density modification using pattern recognition of structural motifs , 2001, Acta crystallographica. Section D, Biological crystallography.

[18]  J. Carrascosa,et al.  C Terminus of Infectious Bursal Disease Virus Major Capsid Protein VP2 Is Involved in Definition of the T Number for Capsid Assembly , 2001, Journal of Virology.

[19]  P. Roy,et al.  RGD Tripeptide of Bluetongue Virus VP7 Protein Is Responsible for Core Attachment to Culicoides Cells , 2001, Journal of Virology.

[20]  J. H. Strauss,et al.  Virus Evolution , 2001, Cell.

[21]  Magali Mathieu,et al.  Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion , 2001, The EMBO journal.

[22]  S. Harrison,et al.  The familiar and the unexpected in structures of icosahedral viruses. , 2001, Current opinion in structural biology.

[23]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[24]  S. Harrison,et al.  Structure of the reovirus core at 3.6 Å resolution , 2000, Nature.

[25]  E. Mundt,et al.  A non‐canonical Lon proteinase lacking the ATPase domain employs the Ser–Lys catalytic dyad to exercise broad control over the life cycle of a double‐stranded RNA virus , 2000, The EMBO journal.

[26]  D Bourgeois,et al.  New processing tools for weak and/or spatially overlapped macromolecular diffraction patterns. , 1999, Acta crystallographica. Section D, Biological crystallography.

[27]  E. Mundt Tissue culture infectivity of different strains of infectious bursal disease virus is determined by distinct amino acids in VP2. , 1999, The Journal of general virology.

[28]  D. Stuart,et al.  The Highly Ordered Double-Stranded RNA Genome of Bluetongue Virus Revealed by Crystallography , 1999, Cell.

[29]  E. Everitt,et al.  Infectious Pancreatic Necrosis Virus: Identification of a VP3-Containing Ribonucleoprotein Core Structure and Evidence for O-Linked Glycosylation of the Capsid Protein VP2 , 1999, Journal of Virology.

[30]  Yongchang Cao,et al.  Adaptation of Very Virulent Infectious Bursal Disease Virus to Chicken Embryonic Fibroblasts by Site-Directed Mutagenesis of Residues 279 and 284 of Viral Coat Protein VP2 , 1999, Journal of Virology.

[31]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[32]  D. Stuart,et al.  The atomic structure of the bluetongue virus core , 1998, Nature.

[33]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[34]  T S Baker,et al.  Internal/structures containing transcriptase-related proteins in top component particles of mammalian orthoreovirus. , 1998, Virology.

[35]  A. Paul,et al.  Protein-primed RNA synthesis by purified poliovirus RNA polymerase , 1998, Nature.

[36]  Alasdair C. Steven,et al.  Structure of L-A Virus: A Specialized Compartment for the Transcription and Replication of Double-stranded RNA , 1997, The Journal of cell biology.

[37]  John E. Johnson,et al.  Quasi-equivalent viruses: a paradigm for protein assemblies. , 1997, Journal of molecular biology.

[38]  S. Fuller,et al.  Intermediates in the assembly pathway of the double‐stranded RNA virus φ6 , 1997, The EMBO journal.

[39]  M. Estes,et al.  Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles , 1997, Nature Structural Biology.

[40]  B. Böttcher,et al.  Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy , 1997, Journal of virology.

[41]  S. Munshi,et al.  The 2.8 A structure of a T = 4 animal virus and its implications for membrane translocation of RNA. , 1996, Journal of molecular biology.

[42]  P. Mellor,et al.  Enhanced infectivity of modified bluetongue virus particles for two insect cell lines and for two Culicoides vector species. , 1996, Virology.

[43]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[44]  Jonathan Grimes,et al.  The crystal structure of bluetongue virus VP7 , 1995, Nature.

[45]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[46]  H. Müller,et al.  The genetic basis for the antigenicity of the VP2 protein of the infectious bursal disease virus. , 1993, The Journal of general virology.

[47]  P. Fitzgerald,et al.  Molecular replacement , 1992 .

[48]  U. Spies,et al.  Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products. , 1987, Virus research.

[49]  I. Kuntz Structures of proteins. , 1980, Science.

[50]  P. Dobos,et al.  Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes , 1979, Journal of virology.

[51]  J. Cohen Ribonucletic acid polymerase activity in purified infectious pancreatic necrosis virus of trout. , 1975, Biochemical and biophysical research communications.

[52]  P. Prusinkiewicz,et al.  Ribbons , 2007, The Visual Computer.

[53]  H. Gelderblom,et al.  Capsid symmetry of viruses of the proposed Birnavirus group , 2005, Archives of Virology.

[54]  Timothy S Baker,et al.  Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. , 2002, Cell.

[55]  E. Mundt,et al.  Alteration of amino acids in VP2 of very virulent infectious bursal disease virus results in tissue culture adaptation and attenuation in chickens. , 2002, The Journal of general virology.

[56]  R. Lewontin,et al.  Properties of RNA , 2000 .

[57]  John E. Johnson,et al.  PRINCIPLES OF VIRUS STRUCTURE , 1999 .

[58]  John E. Johnson,et al.  The structure and function of nodavirus particles: a paradigm for understanding chemical biology. , 1998, Advances in virus research.

[59]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[60]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[61]  T. N. Hanzlik,et al.  The Tetraviridae. , 1997, Advances in virus research.

[62]  T A Jones,et al.  Electron-density map interpretation. , 1997, Methods in enzymology.

[63]  Robert M. Sweet,et al.  Macromolecular Crystallography: Part A , 1997 .

[64]  T. P. Flores,et al.  An algorithm for automatically generating protein topology cartoons. , 1994, Protein engineering.

[65]  John E. Johnson,et al.  Icosahedral RNA virus structure. , 1989, Annual review of biochemistry.

[66]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.