Rectilinear Steiner Trees in Narrow Strips

A rectilinear Steiner tree for a set P of points in R2 is a tree that connects the points in P using horizontal and vertical line segments. The goal of Minimum Rectilinear Steiner Tree is to find a rectilinear Steiner tree with minimal total length. We investigate how the complexity of Minimum Rectilinear Steiner Tree for point sets P inside the strip (−∞, +∞) × [0, δ] depends on the strip width δ. We obtain two main results. We present an algorithm with running time nO( √ δ) for sparse point sets, that is, point sets where each 1 × δ rectangle inside the strip contains O(1) points. For random point sets, where the points are chosen randomly inside a rectangle of height δ and expected width n, we present an algorithm that is fixed-parameter tractable with respect to δ and linear in n. It has an expected running time of 2O(δ √ δ)n. 2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

[1]  Mark de Berg,et al.  Euclidean TSP in Narrow Strips , 2020, SoCG.

[2]  Chak-Kuen Wong,et al.  On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..

[3]  Marcus Brazil,et al.  The Uniform Orientation Steiner Tree Problem is NP-Hard , 2014, Int. J. Comput. Geom. Appl..

[4]  Clark Thomborson,et al.  A Probaby Fast, Provably Optimal Algorithm for Rectilinear Steiner Trees , 1994, Random Struct. Algorithms.

[5]  Martin Zachariasen,et al.  The GeoSteiner software package for computing Steiner trees in the plane: an updated computational study , 2018, Math. Program. Comput..

[6]  Bowen Alpern,et al.  Rectilinear Steiner Tree Minimization on a Workstation , 1992, Computational Support for Discrete Mathematics.

[7]  Pawel Winter,et al.  An algorithm for the steiner problem in the euclidean plane , 1985, Networks.

[8]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[9]  M. Hanan,et al.  On Steiner’s Problem with Rectilinear Distance , 1966 .

[10]  David S. Johnson,et al.  The Complexity of Computing Steiner Minimal Trees , 1977 .

[11]  F. Hwang On Steiner Minimal Trees with Rectilinear Distance , 1976 .

[12]  Marcus Brazil,et al.  Optimal Interconnection Trees in the Plane: Theory, Algorithms and Applications , 2015 .

[13]  K. Chao,et al.  Steiner Minimal Trees , 2005 .

[14]  Ronald L. Rivest,et al.  Introduction to Algorithms, 3rd Edition , 2009 .

[15]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[16]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Inclusion-Exclusion , 2012, Algorithmica.

[17]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[18]  Fahad Panolan,et al.  Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems , 2020, SoCG.

[19]  R. Cowan An introduction to the theory of point processes , 1978 .

[20]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[21]  Marcus Brazil,et al.  Steiner trees for fixed orientation metrics , 2009, J. Glob. Optim..

[22]  Marcus Brazil,et al.  Canonical Forms and Algorithms for Steiner Trees in Uniform Orientation Metrics , 2005, Algorithmica.

[23]  E. Cockayne On the Steiner Problem , 1967, Canadian Mathematical Bulletin.

[24]  Jeffrey S. Salowe,et al.  Spanning trees in hypergraphs with applications to steiner trees , 1998 .