The Exact Lattice Width of Planar Sets and Minimal Arithmetical Thickness

We provide in this paper an algorithm for the exact computation of the lattice width of an integral polygon K with n vertices in O(n log s) arithmetic operations where s is a bound on all integers defining vertices and edges. We also provide an incremental version of the algorithm whose update complexity is shown to be O(log n + log s). We apply this algorithm to construct the arithmetical line with minimal thickness, which contains a given set of integer points.

[1]  Friedrich Eisenbrand,et al.  A linear algorithm for integer programming in the plane , 2005, Math. Program..

[2]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[3]  Warwick Harvey,et al.  Computing Two-Dimensional Integer Hulls , 1999, SIAM J. Comput..

[4]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[5]  Isabelle Debled-Rennesson,et al.  A Linear Algorithm for Segmentation of Digital Curves , 1995, Int. J. Pattern Recognit. Artif. Intell..

[6]  Claus-Peter Schnorr,et al.  The Generalized Gauss Reduction Algorithm , 1996, J. Algorithms.

[7]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[8]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[9]  Isabelle Debled-Rennesson,et al.  An elementary digital plane recognition algorithm , 2005, Discret. Appl. Math..

[10]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[11]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[12]  Mohamed Tajine,et al.  Recognizing arithmetic straight lines and planes , 1996, DGCI.

[13]  William J. Cook,et al.  On integer points in polyhedra , 1992, Comb..

[14]  Ravi Kannan,et al.  A Polynomial Algorithm for the Two-Variable Integer Programming Problem , 1980, JACM.

[15]  H. Scarf Production Sets with Indivisibilities-Part II: The Case of Two Activities , 1981 .

[16]  Chak-Kuen Wong,et al.  A Polynomial-Time Algorithm for the Knapsack Problem with Two Variables , 1976, JACM.

[17]  Godfried T. Toussaint,et al.  Computing the Width of a Set , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Günter Rote,et al.  Fast 2-Variable Integer Programming , 2001, IPCO.

[19]  Günter Rote Finding a Shortest Vector in a Two-Dimensional Lattice Modulo m , 1997, Theor. Comput. Sci..