Reversible logic circuits made of DNA.

We report reversible logic circuits made of DNA. The circuits are based on an AND gate that is designed to be thermodynamically and kinetically reversible and to respond nonlinearly to the concentrations of its input molecules. The circuits continuously recompute their outputs, allowing them to respond to changing inputs. They are robust to imperfections in their inputs.

[1]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[2]  Lulu Qian,et al.  Efficient Turing-Universal Computation with DNA Polymers , 2010, DNA.

[3]  Masami Hagiya,et al.  Chain Reaction Systems Based on Loop Dissociation of DNA , 2005, DNA.

[4]  David Yu Zhang,et al.  Cooperative hybridization of oligonucleotides. , 2011, Journal of the American Chemical Society.

[5]  Faisal A. Aldaye,et al.  Organization of Intracellular Reactions with Rationally Designed RNA Assemblies , 2011, Science.

[6]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[7]  Cosimo Laneve,et al.  Reversible structures , 2011, CMSB.

[8]  G. Seelig,et al.  DNA as a universal substrate for chemical kinetics , 2010, Proceedings of the National Academy of Sciences.

[9]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[10]  Erik Winfree,et al.  Robustness and modularity properties of a non-covalent DNA catalytic reaction , 2010, Nucleic acids research.

[11]  Jonathan Bath,et al.  Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. , 2011, Journal of the American Chemical Society.

[12]  Lila Kari,et al.  Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits Using DNA Strand Displacement , 2010, DNA.

[13]  Virgile Viasnoff,et al.  DNA nanomechanical switches under folding kinetics control. , 2006, Nano letters.

[14]  Erik Winfree,et al.  Catalyzed relaxation of a metastable DNA fuel. , 2006, Journal of the American Chemical Society.

[15]  Conrad Steenberg,et al.  NUPACK: Analysis and design of nucleic acid systems , 2011, J. Comput. Chem..

[16]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[17]  E. Winfree,et al.  Synthetic in vitro transcriptional oscillators , 2011, Molecular systems biology.

[18]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[19]  Dmitry M Kolpashchikov,et al.  Molecular logic gates connected through DNA four-way junctions. , 2010, Angewandte Chemie.

[20]  Yamuna Krishnan,et al.  A DNA nanomachine that maps spatial and temporal pH changes inside living cells. , 2009, Nature nanotechnology.

[21]  Erik Winfree,et al.  An information-bearing seed for nucleating algorithmic self-assembly , 2009, Proceedings of the National Academy of Sciences.

[22]  Robert M. Dirks,et al.  Selective cell death mediated by small conditional RNAs , 2010, Proceedings of the National Academy of Sciences.

[23]  R. Weiss,et al.  A universal RNAi-based logic evaluator that operates in mammalian cells , 2007, Nature Biotechnology.

[24]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[25]  M Reza Ghadiri,et al.  Universal translators for nucleic acid diagnosis. , 2009, Journal of the American Chemical Society.

[26]  Friedrich C. Simmel,et al.  A modular DNA signal translator for the controlled release of a protein by an aptamer , 2006, Nucleic acids research.

[27]  D. Stefanovic,et al.  Training a molecular automaton to play a game. , 2010, Nature nanotechnology.

[28]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[29]  Le A. Trinh,et al.  Programmable in situ amplification for multiplexed imaging of mRNA expression , 2010, Nature Biotechnology.

[30]  Andrew J Turberfield,et al.  DNA hairpins: fuel for autonomous DNA devices. , 2006, Biophysical journal.

[31]  Ashish Goel,et al.  A renewable, modular, and time-responsive DNA circuit , 2011, Natural Computing.

[32]  Y. Sakai,et al.  Programming an in vitro DNA oscillator using a molecular networking strategy , 2011, Molecular systems biology.

[33]  Matthew J. A. Wood,et al.  DNA cage delivery to mammalian cells. , 2011, ACS nano.

[34]  B. Yurke,et al.  Kinetics of DNA and RNA Hybridization in Serum and Serum-SDS , 2010, IEEE Transactions on Nanotechnology.

[35]  R. Murray,et al.  Timing molecular motion and production with a synthetic transcriptional clock , 2011, Proceedings of the National Academy of Sciences.

[36]  Brian M. Frezza,et al.  Modular multi-level circuits from immobilized DNA-based logic gates. , 2007, Journal of the American Chemical Society.

[37]  Ehud Shapiro,et al.  Molecular implementation of simple logic programs. , 2009, Nature nanotechnology.

[38]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[39]  C. Pleij,et al.  An approximation of loop free energy values of RNA H-pseudoknots. , 1999, RNA.

[40]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[42]  Sanjay Tyagi,et al.  Molecular Beacons: Probes that Fluoresce upon Hybridization , 1996, Nature Biotechnology.