A Pseudospectral Observer for Nonlinear Systems

In this paper, we present an observer design method for nonlinear systems based on pseudospectral discretizations and a moving horizon strategy. The observer has a low computational burden, a fast convergence rate and the ability to handle measurement noise. In addition to ordinary differential equations, our observer is applicable to nonlinear systems governed by deferential-algebraic equations (DAE), which are considered very difficult to deal with by other designs such as Kalman filters. The performance of the proposed observer is demonstrated by several numerical experiments on a time-varying chaotic nonlinear system with unknown parameters and a nonlinear circuit with a singularity-induced bifurcation.

[1]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[2]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[3]  Stephen L. Campbell,et al.  Convergence of Nonconvergent IRK Discretizations of Optimal Control Problems with State Inequality Constraints , 2001, SIAM J. Sci. Comput..

[4]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[5]  I. Michael Ross,et al.  Legendre Pseudospectral Approximations of Optimal Control Problems , 2003 .

[6]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[7]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[8]  Arthur J. Krener,et al.  Locally Convergent Nonlinear Observers , 2003, SIAM J. Control. Optim..

[9]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[10]  I. Michael Ross,et al.  Issues in the real-time computation of optimal control , 2006, Math. Comput. Model..

[11]  I. Michael Ross,et al.  Towards Real-Time Computation of Optimal Controls for Nonlinear Systems , 2002 .

[12]  MingQing Xiao,et al.  Observers for linearly unobservable nonlinear systems , 2002, Syst. Control. Lett..

[13]  I. Michael Ross,et al.  Pseudospectral methods for optimal motion planning of differentially flat systems , 2004, IEEE Transactions on Automatic Control.

[14]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[15]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[16]  I. Michael Ross,et al.  Spectral Algorithm for Pseudospectral Methods in Optimal Control , 2008, Journal of Guidance, Control, and Dynamics.

[17]  Ricardo Riaza Double SIB points in differential-algebraic systems , 2003, IEEE Trans. Autom. Control..

[18]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[19]  I. Michael Ross,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[20]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[21]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[22]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.