ZF and the axiom of choice in some paraconsistent set theories
暂无分享,去创建一个
[1] Roland Hinnion. Naive Set Theory with Extensionality in Partial Logic and in Paradoxical Logic , 1994, Notre Dame J. Formal Log..
[2] Ross T. Brady. The consistency of the axioms of abstraction and extensionality in a three-valued logic , 1971, Notre Dame J. Formal Log..
[3] D. Batens. Paraconsistent extensional propositional logics , 1980 .
[4] Maurice Boffa,et al. Interprétations mutuelles entre une théorie positive des ensembles et une extension de la théorie de Kelley-Morse , 1997 .
[5] Greg Restall. A Note on Naive Set Theory in LP , 1992, Notre Dame J. Formal Log..
[6] Marco Forti,et al. The Consistency Problem for Positive Comprehension Principles , 1989, J. Symb. Log..
[7] Olivier Esser. Inconsistency of The Axiom of Choice with The Positive Theory GPK+infinite , 2000, J. Symb. Log..
[8] Diderik Batens,et al. A Rich Paraconsistent Extension Of Full Positive Logic , 2004 .
[9] Paul C. Gilmore,et al. The Consistency of Partial Set Theory without Extensionality , 1974 .
[10] Arnon Avron,et al. On an implication connective of RM , 1986, Notre Dame J. Formal Log..
[11] Roland Hinnion. About the coexistence of “classical sets” with “non-classical” ones: A survey , 2003 .
[12] Otávio Bueno,et al. Paraconsistency: Towards a tentative interpretation , 2001 .
[13] Arnon Avron,et al. Natural 3-valued logics—characterization and proof theory , 1991, Journal of Symbolic Logic.