A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p‐Nitrophenol

Accordingly,the interactions between metal nanoparticles and supportsshould be precisely manipulated in order to maximize theirsynergetic effects. Metal particles should be dispersed evenlyon the supports in order to prevent aggregation betweenparticles in close proximity, and to maintain metal–supportcontact areas. Numerous processes have been developed foreffective dispersion of metal nanoparticles in bifunctionalcatalysts.

[1]  Hye-Young Park,et al.  Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles , 2007 .

[2]  G. Somorjai,et al.  IR spectroscopic observation of molecular transport through Pt@CoO yolk-shell nanostructures. , 2007, Journal of the American Chemical Society.

[3]  Snigdhamayee Praharaj,et al.  Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process , 2007 .

[4]  R. Burch Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. , 2006, Physical chemistry chemical physics : PCCP.

[5]  Daeha Seo,et al.  Polyhedral gold nanocrystals with O h symmetry: from octahedra to cubes. , 2006, Journal of the American Chemical Society.

[6]  G. Somorjai,et al.  Clusters, surfaces, and catalysis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G. Somorjai,et al.  Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. , 2006, Journal of the American Chemical Society.

[8]  H. Chan,et al.  Novel Method for the Preparation of Polymeric Hollow Nanospheres Containing Silver Cores with Different Sizes , 2005 .

[9]  G. Somorjai,et al.  High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. , 2005, The journal of physical chemistry. B.

[10]  M. S. Chen,et al.  The Structure of Catalytically Active Gold on Titania , 2004, Science.

[11]  H. Hah,et al.  New synthetic route for preparing rattle-type silica particles with metal cores. , 2004, Chemical communications.

[12]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[13]  G. Somorjai,et al.  Nanotechnology in catalysis , 2004 .

[14]  K. Esumi,et al.  Preparation of Gold−Dendrimer Nanocomposites by Laser Irradiation and Their Catalytic Reduction of 4-Nitrophenol , 2003 .

[15]  Debra R Rolison,et al.  Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity , 2003, Science.

[16]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[17]  Younan Xia,et al.  Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. , 2003, Journal of the American Chemical Society.

[18]  K. Chao,et al.  Highly Dispersed Metal Nanoparticles in Functionalized SBA-15 , 2003 .

[19]  Jong‐Sung Yu,et al.  Fabrication of nanocapsules with Au particles trapped inside carbon and silica nanoporous shells. , 2003, Chemical communications.

[20]  T. Hyeon,et al.  Synthesis of Nanorattles Composed of Gold Nanoparticles Encapsulated in Mesoporous Carbon and Polymer Shells , 2002 .

[21]  Tomokazu Yoshimura,et al.  Comparison of PAMAM-Au and PPI-Au nanocomposites and their catalytic activity for reduction of 4-nitrophenol. , 2002, Journal of colloid and interface science.

[22]  Younan Xia,et al.  Synthesis and Self-Assembly of Au@SiO2 Core−Shell Colloids , 2002 .

[23]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[24]  S. Inagaki,et al.  Preparation, XAFS Characterization, and Catalysis of Platinum Nanowires and Nanoparticles in Mesoporous Silica FSM-16 , 2002 .

[25]  T. Pal,et al.  Size Regime Dependent Catalysis by Gold Nanoparticles for the Reduction of Eosin , 2001 .

[26]  G. Somorjai,et al.  Formation of Platinum Silicide on a Platinum Nanoparticle Array Model Catalyst Deposited on Silica during Chemical Reaction , 2001 .

[27]  Z. Wang,et al.  Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies , 2000 .

[28]  A. Henglein,et al.  Size dependent properties of Au particles: Coherent excitation and dephasing of acoustic vibrational modes , 1999 .

[29]  A. Henglein,et al.  Radiolytic Preparation of Ultrafine Colloidal Gold Particles in Aqueous Solution: Optical Spectrum, Controlled Growth, and Some Chemical Reactions , 1999 .

[30]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[31]  K. Hayek,et al.  Metal-support boundary sites in catalysis , 1997 .

[32]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[33]  L. Liz‐Marzán,et al.  Direct observation of chemical reactions in silica‐coated gold and silver nanoparticles , 1997 .

[34]  Paul Mulvaney,et al.  Synthesis of Nanosized Gold−Silica Core−Shell Particles , 1996 .

[35]  R. M. Lambert,et al.  Platinum-promoted catalysis by ceria. A study of carbon monoxide oxidation over Pt(111)/CeO2 , 1994 .

[36]  Arun S. Mujumdar,et al.  Introduction to Surface Chemistry and Catalysis , 1994 .

[37]  Charles F. Zukoski,et al.  Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides , 1991 .

[38]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[39]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[40]  M. Boudart HETEROGENEOUS CATALYSIS BY METALS , 1985 .

[41]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[42]  S. C. Fung,et al.  Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide , 1978 .

[43]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .