Mission Design of DESTINY+: Toward Active Asteroid (3200) Phaethon and Multiple Small Bodies

DESTINY+ is an upcoming JAXA Epsilon medium-class mission to flyby the Geminids meteor shower parent body (3200) Phaethon. It will be the world’s first spacecraft to escape from a near-geostationary transfer orbit into deep space using a lowthrust propulsion system. In doing so, DESTINY+ will demonstrate a number of technologies that include a highly efficient ion engine system, lightweight solar array panels, and advanced asteroid flyby observation instruments. These demonstrations will pave the way for JAXA’s envisioned low-cost, high-frequency space exploration plans. Following the Phaethon flyby observation, DESTINY+ will visit additional asteroids as its extended mission. The mission design is divided into three phases: a spiralshaped apogee-raising phase, a multi-lunar-flyby phase to escape Earth, and an interplanetary and asteroids flyby phase. The main challenges include the optimization of the many-revolution low-thrust spiral phase under operational constraints; the design of a multi-lunar-flyby sequence in a multi-body environment; and the design of multiple asteroid flybys connected via Earth gravity assists. This paper shows a novel, practical approach to tackle these complex problems, and presents feasible solutions found within the mass budget and mission constraints. Among them, the baseline solution is shown and discussed in depth; DESTINY+ will spend two years raising its apogee with ion engines, followed by four lunar gravity assists, and a flyby of asteroids (3200) Phaethon and (155140) 2005 UD. Finally, the flight operations plan for the spiral phase and the asteroid flyby phase are presented in detail.

[1]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[2]  Marc D. Rayman,et al.  Dawn: A mission in development for exploration of main belt asteroids Vesta and Ceres , 2006 .

[3]  Andrew F. Cheng,et al.  Comet nucleus tour , 1995 .

[4]  Satoshi Hosoda,et al.  Development and Testing of the Hayabusa2 Ion Engine System , 2016 .

[5]  Y. Tsuda,et al.  System design of the Hayabusa 2—Asteroid sample return mission to 1999 JU3 , 2013 .

[6]  Massimiliano Vasile,et al.  Multi-objective optimisation of many-revolution, low-thrust orbit raising for Destiny mission , 2013 .

[7]  Massimiliano Vasile,et al.  Extended analytical formulas for the perturbed Keplerian motion under a constant control acceleration , 2015 .

[8]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[9]  Takeshi Takashima,et al.  Operations-driven low-thrust trajectory optimization with applications to DESTINY+ , 2020 .

[10]  D. G. Yárnoz,et al.  TISSERAND-POINCARÉ GRAPH AND MULTIPLE LUNAR SWINGBY DESIGN WITH SUN PERTURBATION , 2016 .

[11]  D. Izzo,et al.  Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft Trajectory Design , 2009 .

[12]  Akira Oyama,et al.  Design Exploration of Low-Thrust Space Trajectory Problem for DESTINY Mission , 2016 .

[13]  John P. Carrico,et al.  CALCULATION OF WEAK STABILITY BOUNDARY BALLISTIC LUNAR TRANSFER TRAJECTORIES , 2000 .

[14]  James M. Longuski,et al.  Automated Missed-Thrust Propellant Margin Analysis for Low-Thrust Trajectories , 2015 .

[15]  Denis Estublier,et al.  Smart-1: An analysis of flight data , 2005 .

[16]  Hiroki Matsuo,et al.  Japanese first double lunar swingby mission “Hiten” , 1991 .

[17]  I. Williams,et al.  The Geminid meteor stream and asteroid 3200 Phaethon , 1993 .

[18]  Peter J. Sharer,et al.  STEREO Trajectory and Maneuver Design , 2009 .

[19]  R. Srama,et al.  Modelling DESTINY+ interplanetary and interstellar dust measurements en route to the active asteroid (3200) Phaethon , 2019, Planetary and Space Science.

[20]  Jing Li,et al.  THE DUST TAIL OF ASTEROID (3200) PHAETHON , 2013, 1306.3741.

[21]  Hiroki Senshu,et al.  DESTINY+ Mission: Flyby of Geminids Parent Asteroid (3200) Phaethon and In-Situ Analyses of Dust Accreting on the Earth , 2018 .

[22]  Bruno Sarli,et al.  Design of a Multiple Flyby Mission to the Phaethon–Geminid Complex , 2015 .

[23]  D. Kinoshita,et al.  Apollo asteroid 2005 UD : split nucleus of (3200) Phaethon? , 2006 .

[24]  Shinichi Nakasuka,et al.  LOW-THRUST TRAJECTORY DESIGN AND OPERATIONS OF PROCYON , THE FIRST DEEP-SPACE MICRO-SPACECRAFT , 2015 .

[25]  Jing Li,et al.  ACTIVITY IN GEMINID PARENT (3200) PHAETHON , 2010, 1009.2710.

[26]  Yasuhiro Kawakatsu,et al.  Multiple-Target Low-Thrust Interplanetary Trajectory of DESTINY+ , 2021 .

[28]  Cesar A. Ocampo,et al.  Geometric Analysis of Free-Return Trajectories Following a Gravity-Assisted Flyby , 2005 .

[29]  K. Nishiyama,et al.  In-flight operation of the Hayabusa2 ion engine system on its way to rendezvous with asteroid 162173 Ryugu , 2020 .

[31]  D. Jewitt,et al.  Physical Observations of 2005 UD: A Mini-Phaethon , 2006 .

[32]  Jonathan D. Aziz,et al.  Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation , 2018 .

[33]  D. Izzo Revisiting Lambert’s problem , 2014, 1403.2705.

[34]  F. Whipple 1983 TB and the Geminid Meteors , 1983 .

[35]  Nathan J. Strange,et al.  Cycler Trajectories in Planetary Moon Systems , 2009 .

[36]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.