Accurate strain measurements in highly strained Ge microbridges

Ge under high strain is predicted to become a direct bandgap semiconductor. Very large deformations can be introduced using microbridge devices. However, at the microscale, strain values are commonly deduced from Raman spectroscopy using empirical linear models only established up to e100 = 1.2% for uniaxial stress. In this work, we calibrate the Raman-strain relation at higher strain using synchrotron based microdiffraction. The Ge microbridges show unprecedented high tensile strain up to 4.9% corresponding to an unexpected Δω = 9.9 cm−1 Raman shift. We demonstrate experimentally and theoretically that the Raman strain relation is not linear and we provide a more accurate expression.

[1]  Yuji Yamamoto,et al.  Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach , 2013 .

[2]  Alban Gassenq,et al.  Structural and optical properties of 200 mm germanium-on-insulator (GeOI) substrates for silicon photonics applications , 2015, Photonics West - Optoelectronic Materials and Devices.

[3]  Krishna C. Saraswat,et al.  Direct bandgap germanium-on-silicon inferred from 5.7% 〈100〉 uniaxial tensile strain [Invited] , 2014 .

[4]  J. W. Matthews,et al.  Defects in epitaxial multilayers , 1974 .

[5]  Manuel Cardona,et al.  Pressure dependence of Raman phonons of Ge and 3C-SiC , 1982 .

[6]  I. Wolf Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits , 1996 .

[7]  K. Bourdelle,et al.  Power-dependent Raman analysis of highly strained Si nanobridges. , 2014, Nano letters.

[8]  James S. Harris,et al.  Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy , 2011 .

[9]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[10]  B. Wherrett Light Scattering in Solids IV , 1984 .

[11]  M. Lagally,et al.  Tensilely strained germanium nanomembranes as infrared optical gain media. , 2013, Small.

[12]  Richard Geiger,et al.  Group IV Direct Band Gap Photonics: Methods, Challenges, and Opportunities , 2015, Front. Mater..

[13]  R. Spolenak,et al.  Scanning X-ray strain microscopy of inhomogeneously strained Ge micro-bridges , 2013, Journal of synchrotron radiation.

[14]  S. Thompson,et al.  Strain Effect in Semiconductors , 2010 .

[15]  Y. Bogumilowicz,et al.  (Invited) SOI-Type Bonded Structures for Advanced Technology Nodes , 2014 .

[16]  J. Raskin,et al.  Raman measurements of uniaxial strain in silicon nanostructures , 2013 .

[17]  Emmanuel Augendre,et al.  Challenges and Progress in Germanium-on-Insulator Materials and Device Development towards ULSI Integration , 2009 .

[18]  Jérôme Faist,et al.  Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.

[19]  J Gobrecht,et al.  Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5% , 2012, Nature Communications.

[20]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[21]  J. Coleman,et al.  High-pressure Raman spectroscopy of graphene , 2009 .

[22]  G. Fishman,et al.  Band structure and optical gain of tensile-strained germanium based on a 30 band k⋅p formalism , 2010 .

[23]  J. Hartmann,et al.  Strain in epitaxial Si/SiGe graded buffer structures grown on Si(100), Si(110), and Si(111) optically evaluated by polarized Raman spectroscopy and imaging , 2010 .

[24]  J. Wortman,et al.  Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium , 1965 .

[25]  J. Härtwig,et al.  A tunable multicolour 'rainbow' filter for improved stress and dislocation density field mapping in polycrystals using X-ray Laue microdiffraction. , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[26]  P. Gentile,et al.  Tensile strained germanium nanowires measured by photocurrent spectroscopy and X-ray microdiffraction. , 2015, Nano letters.

[27]  K. Saraswat,et al.  Strain-induced Pseudoheterostructure Nanowires Confining Carriers at Room Temperature with Nanoscale-tunable Band Profiles , 2022 .

[28]  Zoran Ikonic,et al.  Optimum strain configurations for carrier injection in near infrared Ge lasers , 2012 .

[29]  G. O. Dias,et al.  Lattice strain and tilt mapping in stressed Ge microstructures using X-ray Laue micro-diffraction and rainbow-filtering , 2016, 1603.06370.

[30]  Isabelle Sagnes,et al.  All‐Around SiN Stressor for High and Homogeneous Tensile Strain in Germanium Microdisk Cavities , 2015 .

[31]  Fei Wang,et al.  Structural stability and Raman scattering of ZnSe nanoribbons under high pressure , 2009 .

[32]  Shigeru Nakagawa,et al.  Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect , 1998 .

[33]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[34]  Jean-Michel Hartmann,et al.  Germanium content and strain in Si1−xGex alloys characterized by Raman spectroscopy , 2014 .

[35]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[36]  Dominique Bougeard,et al.  Raman characterization of strain and composition in small-sized self-assembled Si/Ge dots , 2003 .

[37]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[38]  E. Martincic,et al.  Control of direct band gap emission of bulk germanium by mechanical tensile strain , 2010 .

[39]  Fred H. Pollak,et al.  Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors , 1972 .

[40]  Manuel Cardona,et al.  Volume dependence of the Raman frequencies of GeSi alloys , 1971 .

[41]  Feng Chen,et al.  Direct-bandgap light-emitting germanium in tensilely strained nanomembranes , 2011, Proceedings of the National Academy of Sciences.

[42]  G. Pourtois,et al.  First-principles study of strained 2D MoS2 , 2012 .

[43]  M. Es‐Souni,et al.  Raman study of nano‐crystalline Ge under high pressure , 2007 .

[44]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[45]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[46]  Jérôme Faist,et al.  1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications , 2015 .

[47]  C. W. T. Bulle‐Lieuwma,et al.  Generation of misfit dislocations in semiconductors , 1987 .