A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks

[1]  Sandeep Kumar Dwivedi,et al.  Hydrogen embrittlement in different materials: A review , 2018, International Journal of Hydrogen Energy.

[2]  Jin Sung Park,et al.  A mechanistic study on the hydrogen trapping property and the subsequent electrochemical corrosion behavior of quenched and tempered steel , 2018, International Journal of Hydrogen Energy.

[3]  Zhongfu Xiang,et al.  Composite Stress Corrosion Cracking Damage Mechanism of Metal-Lined Fiber Hoop-Wrapped Composite Cylinders , 2018, Science of Advanced Materials.

[4]  M. Sause,et al.  Failure load prediction for fiber-reinforced composites based on acoustic emission , 2018, Composites Science and Technology.

[5]  E. Lainé,et al.  Determination of key parameters responsible for polymeric liner collapse in hyperbaric type IV hydrogen storage vessels , 2018, International Journal of Hydrogen Energy.

[6]  W. Park,et al.  Evaluation of stress and crack behavior using the extended finite element method in the composite layer of a type III hydrogen storage vessel , 2018 .

[7]  W. Araki,et al.  A simplified method for predicting burst pressure of type III filament-wound CFRP composite vessels considering the inhomogeneity of fiber packing , 2018 .

[8]  Jens Prager,et al.  Structural health monitoring of composite pressure vessels using guided ultrasonic waves , 2018 .

[9]  E. Lainé,et al.  Replication of liner collapse phenomenon observed in hyperbaric type IV hydrogen storage vessel by explosive decompression experiments , 2018 .

[10]  Hye-Jin Kim,et al.  Effects of titanium content on hydrogen embrittlement susceptibility of hot-stamped boron steels , 2018 .

[11]  Roham Rafiee,et al.  Stochastic prediction of burst pressure in composite pressure vessels , 2018 .

[12]  Thomas A. Yersak,et al.  Predictive model for depressurization-induced blistering of type IV tank liners for hydrogen storage , 2017 .

[13]  H. Roh,et al.  Performance assessment of 700-bar compressed hydrogen storage for light duty fuel cell vehicles , 2017 .

[14]  Y. Murakami,et al.  Hydrogen trapped at intermetallic particles in aluminum alloy 6061-T6 exposed to high-pressure hydrogen gas and the reason for high resistance against hydrogen embrittlement , 2017 .

[15]  C. Loto Stress corrosion cracking: characteristics, mechanisms and experimental study , 2017, The International Journal of Advanced Manufacturing Technology.

[16]  Sergio Ledesma,et al.  Optimization of Type 4 composite pressure vessels using genetic algorithms and simulated annealing , 2017 .

[17]  I. Kwon,et al.  Detecting impact traces on a composite pressure vessel with aluminum-coating optical fiber using a phase-modulated BOCDA sensor , 2017 .

[18]  Hak-Sung Kim,et al.  In situ fabrication of copper electrodes on carbon-fiber-reinforced polymer (CFRP) for damage monitoring by printing and flash light sintering , 2017 .

[19]  Hervé Barthelemy,et al.  Hydrogen storage: Recent improvements and industrial perspectives , 2017 .

[20]  Adrian C. Orifici,et al.  A review of toroidal composite pressure vessel optimisation and damage tolerant design for high pressure gaseous fuel storage , 2016 .

[21]  Chaoming He,et al.  Lightweight multilayer composite structure for hydrogen storage tank , 2016 .

[22]  R. Matsuzaki,et al.  Structural optimization for CFRP cryogenic tank based on energy release rate , 2016 .

[23]  C. Zheng,et al.  Prediction of long-term fatigue life of CFRP composite hydrogen storage vessel based on micromechanics of failure , 2016 .

[24]  V. Carvelli,et al.  High pressure strength of carbon fibre reinforced vinylester and epoxy vessels , 2016 .

[25]  Volnei Tita,et al.  Damage and failure in carbon/epoxy filament wound composite tubes under external pressure: Experimental and numerical approaches , 2016 .

[26]  C. Zheng,et al.  Micromechanics-based progressive failure analysis of carbon fiber/epoxy composite vessel under combined internal pressure and thermomechanical loading , 2016 .

[27]  C. Zheng,et al.  Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel , 2015 .

[28]  T. Belenguer,et al.  Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP , 2015, Materials.

[29]  H. Galiano,et al.  Modeling, parameters identification and experimental validation of composite materials behavior law used in 700 bar type IV hydrogen high pressure storage vessel , 2015 .

[30]  J. Grandidier,et al.  700 bar type IV high pressure hydrogen storage vessel burst – Simulation and experimental validation , 2015 .

[31]  R. Arrieux,et al.  A progressive failure analysis of a 700-bar type IV hydrogen composite pressure vessel , 2015 .

[32]  H. Galiano,et al.  A probabilistic damage behavior law for composite material dedicated to composite pressure vessel , 2015 .

[33]  J. Grandidier,et al.  A fixed directions damage model for composite materials dedicated to hyperbaric type IV hydrogen storage vessel – Part I: Model formulation and identification , 2015 .

[34]  J. Grandidier,et al.  A fixed directions damage model for composite materials dedicated to hyperbaric type IV hydrogen storage vessel – Part II: Validation on notched structures , 2015 .

[35]  S. Matsuoka,et al.  Investigation of hydrogen transport behavior of various low-alloy steels with high-pressure hydrogen gas , 2015 .

[36]  Seung‐Hwan Chang,et al.  Failure analysis of a Type III hydrogen pressure vessel under impact loading induced by free fall , 2015 .

[37]  H. Singh,et al.  A damage evolution study of E-glass/epoxy composite under low velocity impact , 2015 .

[38]  Z. Zhuang,et al.  Development of a new constitutive model considering the shearing effect for anisotropic progressive damage in fiber-reinforced composites , 2015 .

[39]  C. Zheng,et al.  Thermo-mechanical investigation of composite high-pressure hydrogen storage cylinder during fast filling , 2015 .

[40]  A. Yamashita,et al.  Development of High-Pressure Hydrogen Storage System for the Toyota “Mirai” , 2015 .

[41]  Virgile Delhaye,et al.  Numerical/experimental impact events on filament wound composite pressure vessel , 2015 .

[42]  Y. Furuya,et al.  Qualification of chromium–molybdenum steel based on the safety factor multiplier method in CHMC1-2014 , 2015 .

[43]  A. D. Luca,et al.  Numerical study for the structural analysis of composite laminates subjected to low velocity impact , 2014 .

[44]  Andreas T. Echtermeyer,et al.  Safety approach for composite pressure vessels for road transport of hydrogen. Part 1: Acceptable probability of failure and hydrogen mass , 2014 .

[45]  Ji-Beom Yoo,et al.  Graphene coating as a protective barrier against hydrogen embrittlement , 2014 .

[46]  Praveen Linga,et al.  Hydrogen storage in clathrate hydrates: Current state of the art and future directions , 2014 .

[47]  F. Touchard,et al.  Numerical study of influence of temperature and matrix cracking on type IV hydrogen high pressure storage vessel behavior , 2014 .

[48]  G. Mair,et al.  Regulations and research on RC&S for hydrogen storage relevant to transport and vehicle issues with special focus on composite containments , 2014 .

[49]  Tong Earn Tay,et al.  Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences , 2014 .

[50]  Stelios Kyriakides,et al.  Liner wrinkling and collapse of bi-material pipe under bending , 2014 .

[51]  Rong Li,et al.  Research on hydrogen environment fatigue test system and correlative fatigue test of hydrogen storage vessel , 2014 .

[52]  Chao-Nan Xu,et al.  Fatigue crack detection of CFRP composite pressure vessel using mechanoluminescent sensor , 2013, 2013 IEEE SENSORS.

[53]  Rajesh K. Ahluwalia,et al.  Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles , 2013 .

[54]  C. Zheng,et al.  Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment , 2013 .

[55]  Caglar Oskay,et al.  Experimental and computational investigation of progressive damage accumulation in CFRP composites , 2013 .

[56]  Chien-Yuh Yang,et al.  Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer , 2013 .

[57]  Hervé Barthelemy,et al.  Hydrogen storage – Industrial prospectives , 2012 .

[58]  V. Tan,et al.  Progressive Failure Analysis of Scaled Double-Notched Carbon/Epoxy Composite Laminates , 2012 .

[59]  Alain Thionnet,et al.  Visual indicator for the detection of end-of-life criterion for composite high pressure vessels for hydrogen storage , 2012 .

[60]  Seung‐Hwan Chang,et al.  Determination of the autofrettage pressure and estimation of material failures of a Type III hydrogen pressure vessel by using finite element analysis , 2012 .

[61]  Constantinos Soutis,et al.  Modelling damage evolution in composite laminates subjected to low velocity impact , 2012 .

[62]  Peng Liu,et al.  Micromechanical damage modeling and multiscale progressive failure analysis of composite pressure vessel , 2012, Damage Modeling of Composite Structures.

[63]  Ping Xu,et al.  Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review , 2012 .

[64]  Pascal Francescato,et al.  Comparison of optimal design methods for type 3 high-pressure storage tanks , 2012 .

[65]  P. Moretto,et al.  CFD analysis of fast filling scenarios for 70 MPa hydrogen type IV tanks , 2012 .

[66]  Lorenzo Iannucci,et al.  A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage , 2012 .

[67]  Seung‐Hwan Chang,et al.  Evaluation of modeling techniques for a type III hydrogen pressure vessel (70 MPa) made of an aluminum liner and a thick carbon/epoxy composite for fuel cell vehicles , 2012 .

[68]  Laehyun Kim,et al.  The effect of composite damage on fatigue life of the high pressure vessel for natural gas vehicles , 2011 .

[69]  Giangiacomo Minak,et al.  Low velocity impact and compression after impact tests on thin carbon/epoxy laminates , 2011 .

[70]  Vincent B. C. Tan,et al.  Micromechanics-based progressive failure analysis of fibre-reinforced composites with non-iterative element-failure method , 2011 .

[71]  A. Thionnet,et al.  Determination of lifetime probabilities of carbon fibre composite plates and pressure vessels for hy , 2011 .

[72]  J. Tomioka,et al.  Influence of temperature on the fatigue strength of compressed-hydrogen tanks for vehicles , 2011 .

[73]  Jinyang Zheng,et al.  Recent developments on damage modeling and finite element analysis for composite laminates: A review , 2010 .

[74]  Sung Chan Kim,et al.  Thermal characteristics during hydrogen fueling process of type IV cylinder , 2010 .

[75]  Alain Thionnet,et al.  Life prediction for carbon fibre filament wound composite structures , 2010 .

[76]  Haiyan Bie,et al.  Fatigue life evaluation of high pressure hydrogen storage vessel , 2010 .

[77]  Ping Xu,et al.  Optimal design of high pressure hydrogen storage vessel using an adaptive genetic algorithm , 2010 .

[78]  J. B. Liu,et al.  Recent Advances in the Study of Structural Materials Compatibility with Hydrogen , 2010, Advanced materials.

[79]  Pengfei Liu,et al.  Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method , 2010 .

[80]  Rami Haj-Ali,et al.  Cohesive Micromechanics: A New Approach for Progressive Damage Modeling in Laminated Composites , 2009 .

[81]  Ping Xu,et al.  Risk identification and control of stationary high-pressure hydrogen storage vessels , 2009 .

[82]  Jinyang Zheng,et al.  Finite element analysis of burst pressure of composite hydrogen storage vessels , 2009 .

[83]  Yuanchen Huang,et al.  Micro-Mechanics of Failure (MMF) for Continuous Fiber Reinforced Composites , 2008 .

[84]  Pierre Ladevèze,et al.  Construction of a micromechanics-based intralaminar mesomodel, and illustrations in ABAQUS/Standard , 2008 .

[85]  Pengfei Liu,et al.  Calculations of plastic collapse load of pressure vessel using FEA , 2008 .

[86]  Jinyang Zheng,et al.  Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics , 2008 .

[87]  Brian Falzon,et al.  A progressive failure model for composite laminates subjected to low velocity impact damage , 2008 .

[88]  Alain Thionnet,et al.  Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures: Part 3. Multiscale reconstruction of composite behaviour , 2008 .

[89]  Jinyang Zheng,et al.  Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates , 2008 .

[90]  Xin Wang,et al.  Damage detection and leakage alert of fiber composite wrapped tank for high pressure hydrogen storage , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[91]  M. Kane PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT , 2008 .

[92]  P. Camanho,et al.  Prediction of size effects in notched laminates using continuum damage mechanics , 2007 .

[93]  Pedro P. Camanho,et al.  A continuum damage model for composite laminates: Part II – Computational implementation and validation , 2007 .

[94]  Pedro P. Camanho,et al.  A continuum damage model for composite laminates: Part I - Constitutive model , 2007 .

[95]  Anthony M. Waas,et al.  Prediction of progressive failure in multidirectional composite laminated panels , 2007 .

[96]  J. Oh,et al.  Effect of Fiber Arrangement on Residual Thermal Stress Distributions in a Unidirectional Composite , 2007 .

[97]  Zheng-ming Huang Failure analysis of laminated structures by FEM based on nonlinear constitutive relationship , 2007 .

[98]  Qingda Yang,et al.  In Quest of Virtual Tests for Structural Composites , 2006, Science.

[99]  De Xie,et al.  Discrete cohesive zone model for mixed-mode fracture using finite element analysis , 2006 .

[100]  Jinyang Zheng,et al.  A Monte Carlo finite element simulation of damage and failure in SiC/Ti–Al composites , 2006 .

[101]  Lorenzo Iannucci,et al.  An energy based damage model for thin laminated composites , 2006 .

[102]  Z. Mao Hydrogen energy for the transportation sector in China , 2006 .

[103]  Li Zhou,et al.  Progress and problems in hydrogen storage methods , 2005 .

[104]  E. David An overview of advanced materials for hydrogen storage , 2005 .

[105]  Qingda Yang,et al.  Cohesive models for damage evolution in laminated composites , 2005 .

[106]  Francisco Espinosa-Loza,et al.  Vehicular storage of hydrogen in insulated pressure vessels , 2005 .

[107]  P. D. Soden,et al.  Failure Criteria in Fibre-Reinforced-Polymer Composites , 2004 .

[108]  M. L. Neelis,et al.  Exergetic life cycle analysis of hydrogen production and storage systems for automotive applications , 2004 .

[109]  Matti Ristinmaa,et al.  Damage Evolution in Elasto-Plastic Materials - Material Response Due to Different Concepts , 2003 .

[110]  P. D. Soden,et al.  A COMPARISON OF THE PREDICTIVE CAPABILITIES OF CURRENT FAILURE THEORIES FOR COMPOSITE LAMINATES, JUDGED AGAINST EXPERIMENTAL EVIDENCE , 2002 .

[111]  P. Camanho,et al.  Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials , 2002 .

[112]  Paolo Lonetti,et al.  An Inelastic Damage Model for Fiber Reinforced Laminates , 2002 .

[113]  Michael Vormwald,et al.  Residual stress fields and fatigue analysis of autofrettaged parts , 2002 .

[114]  Th.B. Kermanidis,et al.  A three‐dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading , 2001 .

[115]  Phantom Works,et al.  STRAIN INVARIANT FAILURE CRITERIA FOR POLYMERS IN COMPOSITE MATERIALS , 2001 .

[116]  M. Biezma The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking , 2001 .

[117]  W Sleight David,et al.  Progressive Failure Analysis Methodology for Laminated Composite Structures , 1999 .

[118]  Andrew C. Hansen,et al.  A Multicontinuum Theory for Thermal-Elastic Finite Element Analysis of Composite Materials , 1997 .

[119]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[120]  Pericles S. Theocaris,et al.  Weighing Failure Tensor Polynomial Criteria for Composites , 1992 .

[121]  Richard M. Christensen,et al.  Tensor Transformations and Failure Criteria for the Analysis of Fiber Composite Materials , 1988 .

[122]  F. Chang,et al.  A Progressive Damage Model for Laminated Composites Containing Stress Concentrations , 1987 .

[123]  Z. Hashin Failure Criteria for Unidirectional Fiber Composites , 1980 .

[124]  S. E. Yamada,et al.  Analysis of Laminate Strength and Its Distribution , 1978 .

[125]  Howard M. Adelman,et al.  Evaluation of the Tensor Polynomial and Hoffman Strength Theories for Composite Materials , 1977 .

[126]  Zvi Hashin,et al.  Failure Modes of Angle Ply Laminates , 1975 .

[127]  Z. Hashin,et al.  A Fatigue Failure Criterion for Fiber Reinforced Materials , 1973 .

[128]  E. M. Wu,et al.  A General Theory of Strength for Anisotropic Materials , 1971 .

[129]  O. Hoffman The Brittle Strength of Orthotropic Materials , 1967 .

[130]  D. Nie,et al.  Stress and Damage Analyses of Composite Overwrapped Pressure Vessel , 2015 .

[131]  Jinyang Zheng,et al.  Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method , 2014 .

[132]  Jinyang Zheng,et al.  Development of high pressure gaseous hydrogen storage technologies , 2012 .

[133]  Dirk Vandepitte,et al.  A new damage model for composite laminates , 2012 .

[134]  J.-F. Maire,et al.  A multiscale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models , 2007 .

[135]  M. Rogante,et al.  DEFECTOSCOPY AND PERSPECTIVES RELATED TO METALLIC MATERIALS ADOPTABLE IN HYDROGEN STORAGE PRESSURE TANKS PRODUCTION , 2007 .

[136]  A. Waas,et al.  Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite , 2006 .

[137]  H. Schürmann,et al.  FAILURE ANALYSIS OF FRP LAMINATES BY MEANS OF PHYSICALLY BASED PHENOMENOLOGICAL MODELS 1 This articl , 1998 .

[138]  C. Sun,et al.  COMPARATIVE EVALUATION OF FAILURE ANALYSIS METHODS FOR COMPOSITE LAMINATES. , 1996 .

[139]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[140]  Kenneth Reifsnider,et al.  Stiffness-reduction mechanisms in composite laminates , 1982 .

[141]  S. Tsai,et al.  Introduction to composite materials , 1980 .