Determination of maximal symmetry groups of classes of differential equations

A symmetry of a differential equation is a transformation which leaves invariant its family of solutions. As the functional form of a member of a class of differential equations changes, its symmetry group can also change. We give an algorithm for determining the structure and dimension of the symmetry group(s) of maximal dimension for classes of partial differential equations. It is based on the application of differential elimination algorithms to the linearized equations for the unknown symmetries. Existence and Uniqueness theorems are applied to the output of these algorithms to give the dimension of the maximal symmetry group. Classes of differential equations considered include ODE of form <italic>u<subscrpt>xx</subscrpt></italic> = ƒ(<italic>x, u, u<subscrpt>x</subscrpt></italic>), Reaction-Diffusion Systems of form <italic>u<subscrpt>t</subscrpt></italic> - <italic>u<subscrpt>xx</subscrpt></italic> = ƒ(<italic>u, v</italic>), <italic>v<subscrpt>t</subscrpt></italic> - <italic>v<subscrpt>xx</subscrpt></italic> = <italic>g</italic>(<italic>u, v</italic>), and Nonlinear Telegraph Systems of form <italic>v<subscrpt>t</subscrpt></italic> = <italic>u<subscrpt>x</subscrpt></italic>, <italic>v<subscrpt>x</subscrpt></italic> = <italic>C</italic>(<italic>u, x</italic>)<italic>u<subscrpt>x</subscrpt></italic> + <italic>B</italic>(<italic>u, x</italic>).

[1]  David Hartley,et al.  A Constructive Implementation of the Cartan-Kähler Theory of Exterior Differential Systems , 1991, J. Symb. Comput..

[2]  Gregory J. Reid,et al.  Rankings of partial derivatives , 1997, ISSAC.

[3]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[4]  Luther Pfahler Eisenhart,et al.  Non-Riemannian Geometry , 2005 .

[5]  Gregory J. Reid,et al.  Reduction of systems of nonlinear partial differential equations to simplified involutive forms , 1996, European Journal of Applied Mathematics.

[6]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[7]  C. J. Rust,et al.  Rankings of derivatives for elimination algorithms and formal solvability of analytic partial differential equations , 1998 .

[8]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[9]  Gregory J. Reid,et al.  Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution , 1991, European Journal of Applied Mathematics.

[10]  Willy Hereman,et al.  Review of Symbolic Software for the Computation of Lie Symmetries of Differential Equations , 1994 .

[11]  C. J. Rust,et al.  Existence and Uniqueness Theorems for Formal Power Series Solutions of Analytic Diierential Systems , 1999 .

[12]  Ar. Tresse,et al.  Sur les invariants différentiels des groupes continus de transformations , 1894 .

[13]  N. Kamran,et al.  Classification of second-order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries , 1989 .

[14]  Gregory J. Reid,et al.  Finding abstract Lie symmetry algebras of differential equations without integrating determining equations , 1991, European Journal of Applied Mathematics.

[15]  Fritz Schwarz,et al.  Janet bases of 2nd order ordinary differential equations , 1996, ISSAC '96.

[16]  Maurice Janet,et al.  Sur les systèmes d'équations aux dérivées partielles , 1920 .

[17]  Giuseppa Carra'Ferro,et al.  Groebner Bases and Differential Algebra , 1987 .

[18]  Brian R. Seymour,et al.  Exact solutions for large amplitude waves in dispersive and dissipative systems , 1985 .

[19]  Gregory J. Reid,et al.  Algorithmic determination of commutation relations for Lie symmetry algebras of PDEs , 1992, ISSAC '92.

[20]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[21]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[22]  Thomas Wolf,et al.  A package for the analytic investigation and exact solution of differential equations , 1987, EUROCAL.

[23]  Group analysis of a semilinear vector diffusion equation , 1983 .

[24]  G. Reid,et al.  Fast differential elimination in C: The CDiffElim environment ? ? This program can be downloaded fro , 2001 .

[25]  Fritz Schwarz,et al.  Reduction and completion algorithms for partial differential equations , 1992, ISSAC '92.

[26]  Gregory J. Reid,et al.  Existence and uniqueness theorems for formal power series solutions of analytic differential systems , 1999, ISSAC '99.