The super elongation complex (SEC) family in transcriptional control

[1]  A. Shilatifard,et al.  The Super Elongation Complex Family of RNA Polymerase II Elongation Factors: Gene Target Specificity and Transcriptional Output , 2012, Molecular and Cellular Biology.

[2]  Qiang Zhou,et al.  RNA polymerase II elongation control. , 2012, Annual review of biochemistry.

[3]  A. Shilatifard,et al.  The little elongation complex regulates small nuclear RNA transcription. , 2011, Molecular cell.

[4]  S. Lowe,et al.  RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia , 2011, Nature.

[5]  S. Robson,et al.  Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia , 2011, Nature.

[6]  R. Young,et al.  BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc , 2011, Cell.

[7]  Caleb K. Chan,et al.  Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin , 2011, Proceedings of the National Academy of Sciences.

[8]  D. Gilmour,et al.  Negative Elongation Factor Accelerates the Rate at Which Heat Shock Genes Are Shut off by Facilitating Dissociation of Heat Shock Factor , 2011, Molecular and Cellular Biology.

[9]  Madelaine Gogol,et al.  Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). , 2011, Genes & development.

[10]  A. Shilatifard,et al.  Human Mediator Subunit MED26 Functions as a Docking Site for Transcription Elongation Factors , 2011, Cell.

[11]  M. Levine Paused RNA Polymerase II as a Developmental Checkpoint , 2011, Cell.

[12]  A. Shilatifard,et al.  The super elongation complex (SEC) and MLL in development and disease. , 2011, Genes & development.

[13]  L. Gudas,et al.  Retinoids, retinoic acid receptors, and cancer. , 2011, Annual review of pathology.

[14]  Stuart H. Orkin,et al.  A Myc Network Accounts for Similarities between Embryonic Stem and Cancer Cell Transcription Programs , 2010, Cell.

[15]  Ali Shilatifard,et al.  Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis , 2010, Nature Reviews Cancer.

[16]  A. Burlingame,et al.  HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. , 2010, Molecular cell.

[17]  Yves Levy,et al.  HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. , 2010, Molecular cell.

[18]  A. Shilatifard,et al.  AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. , 2010, Molecular cell.

[19]  R. Krumlauf,et al.  Hox genes and segmentation of the hindbrain and axial skeleton. , 2009, Annual review of cell and developmental biology.

[20]  John T. Lis,et al.  Defining mechanisms that regulate RNA polymerase II transcription in vivo , 2009, Nature.

[21]  Alistair N Boettiger,et al.  Synchronous and Stochastic Patterns of Gene Activation in the Drosophila Embryo , 2009, Science.

[22]  D. Gilmour,et al.  Promoter proximal pausing on genes in metazoans , 2009, Chromosoma.

[23]  R. Eisenman,et al.  Myc's broad reach. , 2008, Genes & development.

[24]  Leping Li,et al.  NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. , 2008, Genes & development.

[25]  K. Davies,et al.  The robotic mouse: Unravelling the function of AF4 in the cerebellum , 2005, The Cerebellum.

[26]  Qiang Zhou,et al.  Brd4 Recruits P-TEFb to Chromosomes at Late Mitosis To Promote G1 Gene Expression and Cell Cycle Progression , 2007, Molecular and Cellular Biology.

[27]  G. Grosveld,et al.  Overexpression of N-Myc rapidly causes acute myeloid leukemia in mice. , 2007, Cancer research.

[28]  B. Peterlin,et al.  Controlling the elongation phase of transcription with P-TEFb. , 2006, Molecular cell.

[29]  M. Tomasson,et al.  c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. , 2005, Blood.

[30]  J. Brady,et al.  The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. , 2005, Molecular cell.

[31]  Qiang Zhou,et al.  Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. , 2005, Molecular cell.

[32]  T. Dingermann,et al.  Interaction of AF4 wild-type and AF4·MLL fusion protein with SIAH proteins: indication for t(4;11) pathobiology? , 2004, Oncogene.

[33]  D. Soprano,et al.  Retinoic acid receptors and cancer. , 2002, The Journal of nutrition.

[34]  Ali Shilatifard,et al.  Factors regulating the transcriptional elongation activity of RNA polymerase II , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[35]  Y. Zhu,et al.  RNA polymerase II elongation control. , 1998, Cold Spring Harbor symposia on quantitative biology.

[36]  A. Shilatifard,et al.  An RNA Polymerase II Elongation Factor Encoded by the Human ELL Gene , 1996, Science.

[37]  R. Conaway,et al.  The RNA polymerase II elongation complex , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[38]  J. Rowley,et al.  Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. , 1994, Proceedings of the National Academy of Sciences of the United States of America.