Accurate and rapid docking of protein-protein complexes on the basis of intermolecular nuclear overhauser enhancement data and dipolar couplings by rigid body minimization.

A simple and rapid method is presented for solving the three-dimensional structures of protein-protein complexes in solution on the basis of experimental NMR restraints that provide the requisite translational (i.e., intermolecular nuclear Overhauser enhancement, NOE, data) and orientational (i.e., backbone (1)H-(15)N dipolar couplings and intermolecular NOEs) information. Providing high-resolution structures of the proteins in the unbound state are available and no significant backbone conformational changes occur upon complexation (which can readily be assessed by analysis of dipolar couplings measured on the complex), accurate and rapid docking of the two proteins can be achieved. The method, which is demonstrated for the 40-kDa complex of enzyme I and the histidine phosphocarrier protein, involves the application of rigid body minimization using a target function comprising only three terms, namely experimental NOE-derived intermolecular interproton distance and dipolar coupling restraints, and a simple intermolecular van der Waals repulsion potential. This approach promises to dramatically reduce the amount of time and effort required to solve the structures of protein-protein complexes by NMR, and to extend the capabilities of NMR to larger protein-protein complexes, possibly up to molecular masses of 100 kDa or more.

[1]  L. Delbaere,et al.  The 2.0-A resolution structure of Escherichia coli histidine-containing phosphocarrier protein HPr. A redetermination. , 1994, The Journal of biological chemistry.

[2]  A. Bax,et al.  Evaluation of cross-correlation effects and measurement of one-bond couplings in proteins with short transverse relaxation times. , 2000, Journal of magnetic resonance.

[3]  G. Marius Clore,et al.  Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution , 1997, Nature Structural Biology.

[4]  A M Gronenborn,et al.  A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. , 1998, Journal of magnetic resonance.

[5]  C. Bewley,et al.  Impact of Residual Dipolar Couplings on the Accuracy of NMR Structures Determined from a Minimal Number of NOE Restraints , 1999 .

[6]  A M Gronenborn,et al.  Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. , 1989, Critical reviews in biochemistry and molecular biology.

[7]  A. Gronenborn,et al.  Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. , 1988, Protein engineering.

[8]  D. S. Garrett,et al.  R-factor, Free R, and Complete Cross-Validation for Dipolar Coupling Refinement of NMR Structures , 1999 .

[9]  A M Gronenborn,et al.  Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. , 1998, Journal of magnetic resonance.

[10]  D Cowburn,et al.  Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A M Gronenborn,et al.  New methods of structure refinement for macromolecular structure determination by NMR. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  L. Kay,et al.  The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. , 1998, Annual review of biophysics and biomolecular structure.

[13]  Ad Bax,et al.  Modulation of the Alignment Tensor of Macromolecules Dissolved in a Dilute Liquid Crystalline Medium , 1998 .

[14]  A. Bax,et al.  Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. , 1997, Science.

[15]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[16]  K Wüthrich,et al.  NMR spectroscopy of large molecules and multimolecular assemblies in solution. , 1999, Current opinion in structural biology.

[17]  A M Gronenborn,et al.  Improvements and extensions in the conformational database potential for the refinement of NMR and X-ray structures of proteins and nucleic acids. , 1997, Journal of magnetic resonance.

[18]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[19]  D. Liao,et al.  The first step in sugar transport: crystal structure of the amino terminal domain of enzyme I of the E. coli PEP: sugar phosphotransferase system and a model of the phosphotransfer complex with HPr. , 1996, Structure.

[20]  D. S. Garrett,et al.  Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr , 1999, Nature Structural Biology.