The global convergence of a descent PRP conjugate gradient method

Recently, Yu and Guan proposed a modified PRP method (called DPRP method) which can generate sufficient descent directions for the objective function. They established the global convergence of the DPRP method based on the assumption that stepsize is bounded away from zero. In this paper, without the requirement of the positive lower bound of the stepsize, we prove that the DPRP method is globally convergent with a modified strong Wolfe line search. Moreover, we establish the global convergence of the DPRP method with a Armijo-type line search. The numerical results show that the proposed algorithms are efficient. Mathematical subject classification: Primary: 90C30; Secondary: 65K05.

[1]  C. Storey,et al.  Efficient generalized conjugate gradient algorithms, part 1: Theory , 1991 .

[2]  Li Zhang,et al.  Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search , 2006, Numerische Mathematik.

[3]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[4]  William W. Hager,et al.  Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.

[5]  Yu-Hong Dai,et al.  Conjugate Gradient Methods with Armijo-type Line Searches , 2002 .

[6]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[7]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[8]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[9]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[10]  Ya-Xiang Yuan,et al.  Convergence properties of the Fletcher-Reeves method , 1996 .

[11]  David F. Shanno,et al.  Conjugate Gradient Methods with Inexact Searches , 1978, Math. Oper. Res..

[12]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[13]  Lian Shu-jun Convergence Properties of the Conjugate Descent Method with Armijo-type Line Searches , 2005 .

[14]  M. Al-Baali Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .

[15]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[16]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[17]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[18]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[19]  Weijun Zhou,et al.  A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence , 2006 .

[20]  Li Zhang New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization , 2009 .

[21]  L Guan Modified PRP Methods with Sufficient Descent Property and Their Convergence Properties , 2006 .

[22]  M. Fukushima,et al.  A modified BFGS method and its global convergence in nonconvex minimization , 2001 .

[23]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.

[24]  P. Wolfe Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .