The Frobenius Problem in a Free Monoid

The classical Frobenius problem over ${mathbb N}$ is to compute the largest integer $g$ not representable as a non-negative integer linear combination of non-negative integers $x_1, x_2, ldots, x_k$, where $gcd(x_1, x_2, ldots, x_k) = 1$. In this paper we consider novel generalizations of the Frobenius problem to the noncommutative setting of a free monoid. Unlike the commutative case, where the bound on $g$ is quadratic, we are able to show exponential or subexponential behavior for several analogues of $g$, with the precise bound depending on the particular measure chosen.

[1]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[2]  Vsevolod F. Lev The Continuous Postage Stamp Problem , 2006 .

[3]  E. Selmer,et al.  On the linear diophantine problem of Frobenius. , 1977 .

[4]  J. B. Roberts On a Diophantine problem , 1957 .

[5]  Graham C. Denham,et al.  Short Generating Functions for some Semigroup Algebras , 2003, Electron. J. Comb..

[6]  Ernst S. Selmer On Shellsort and the frobenius problem , 1989, BIT Comput. Sci. Sect..

[7]  Robert Sedgewick,et al.  Analysis of Shellsort and Related Algorithms , 1996, ESA.

[8]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[9]  T. Rado On non-computable functions , 1962 .

[10]  M. Schützenberger,et al.  The equation $a^M=b^Nc^P$ in a free group. , 1962 .

[11]  Michael Z. Spivey Quadratic Residues and the Frobenius Coin Problem , 2007 .

[12]  I. Good Normal Recurring Decimals , 1946 .

[13]  Herbert S. Wilf,et al.  Representations of integers by linear forms in nonnegative integers , 1972 .

[14]  Gerhard J. Woeginger,et al.  DNA Sequencing, Eulerian Graphs, and the Exact Perfect Matching Problem , 2002, WG.

[15]  A. Strzebonski,et al.  FROBENIUS NUMBERS BY LATTICE POINT ENUMERATION , 2007 .

[16]  Matthias Beck,et al.  The Frobenius Problem, Rational Polytopes, and Fourier–Dedekind Sums , 2002 .

[17]  Lila Kari,et al.  Duplication in DNA Sequences , 2008, Developments in Language Theory.

[18]  S. SERTÖZ,et al.  On the number of Solutions of a Diophantine equation of Frobenius , 1998 .

[19]  H. Wilf,et al.  Uniqueness theorems for periodic functions , 1965 .

[20]  Jacek Blazewicz,et al.  DNA Sequencing With Positive and Negative Errors , 1999, J. Comput. Biol..

[21]  Herbert E. Scarf,et al.  The Frobenius Problem and Maximal Lattice Free Bodies , 1993, Math. Oper. Res..

[22]  R. Graham,et al.  On a linear diophantine problem of Frobenius , 1972 .

[23]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[24]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[25]  Donald L. Shell,et al.  A high-speed sorting procedure , 1959, CACM.

[26]  I. J. Good,et al.  Exact Markov Probabilities from Oriented Linear Graphs , 1957 .

[27]  Alfred Brauer,et al.  On a Problem of Partitions II , 1954 .

[28]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[29]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[30]  N. S. Mendelsohn,et al.  Gaps in the exponent set of primitive matrices , 1964 .

[31]  Edouard Thiel,et al.  Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D , 2002, Pattern Recognit. Lett..

[32]  Robert Sedgewick A New Upper Bound for Shellsort , 1986, J. Algorithms.

[33]  David E. Muller,et al.  Infinite sequences and finite machines , 1963, SWCT.

[34]  J. Roberts,et al.  Note on linear forms , 1956 .

[35]  Wun-Seng Chou,et al.  On the partition function of a finite set , 2003, Australas. J Comb..

[36]  S.-Y. Kuroda,et al.  Classes of Languages and Linear-Bounded Automata , 1964, Inf. Control..

[37]  Pedro A. García-Sánchez,et al.  EVERY POSITIVE INTEGER IS THE FROBENIUS NUMBER OF A NUMERICAL SEMIGROUP WITH THREE GENERATORS , 2004 .

[38]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[39]  Jeffrey Shallit The computational complexity of the local postage stamp problem , 2002, SIGA.

[40]  Peter S. Landweber,et al.  Three Theorems on Phrase Structure Grammars of Type 1 , 1963, Inf. Control..

[41]  Martin Kutrib,et al.  Nondeterministic Descriptional Complexity Of Regular Languages , 2003, Int. J. Found. Comput. Sci..

[42]  Harold Greenberg,et al.  Solution to a Linear Diophantine Equation for Nonnegative Integers , 1988, J. Algorithms.

[43]  Hans Rohrbach Anwendung eines Satzes der additiven Zahlentheorie auf eine gruppentheoretische Frage , 1937 .

[44]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[45]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[46]  J. S. Byrnes,et al.  A partition problem of Frobenius, II , 1975 .

[47]  Tom C. Brown,et al.  A REMARK RELATED TO THE FROBENIUS PROBLEM , 2010 .

[48]  Frobenius Problem for Semigroups S (d1, d2, d3) , 2008 .

[49]  N. S. Mendelsohn A LINEAR DIOPHANTINE EQUATION WITH APPLICATIONS TO NON‐NEGATIVE MATRICES , 1970 .

[50]  Ian F. Blake,et al.  Algebraic-Geometry Codes , 1998, IEEE Trans. Inf. Theory.

[51]  Robert McNaughton,et al.  Regular Expressions and State Graphs for Automata , 1960, IRE Trans. Electron. Comput..

[52]  Symbolic dynamics , 2008, Scholarpedia.

[53]  Stan Wagon,et al.  Faster Algorithms for Frobenius Numbers , 2005, Electron. J. Comb..

[54]  Mordechai Lewin,et al.  On a Linear Diophantine Problem , 1973 .

[55]  Vaughan R. Pratt Shellsort and Sorting Networks , 1972, Outstanding Dissertations in the Computer Sciences.

[56]  Ernst Leiss Constructing a finite automaton for a given regular expression , 1980, SIGA.

[57]  Öyvind Beyer,et al.  On the linear diophantine problem of Frobenius in three variables. , 1978 .

[58]  P. T. Bateman Remark on a Recent Note on Linear Forms , 1958 .

[59]  Olof Heden The Frobenius number and partitions of a finite vector space , 1984 .

[60]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[61]  Mordechai Lewin,et al.  An algorithm for a solution of a problem of Frobenius. , 1975 .

[62]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[63]  Ravindran Kannan Solution of the Frobenius problem , 1989 .

[64]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[65]  ALİ E. ÖZLÜK ON A DIOPHANTINE PROBLEM OF FROBENIUS , 2004 .

[66]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[67]  Chung-wu Ho,et al.  On the Sizes of Elements in the Complement of a Submonoid of Integers , 1991 .

[68]  R. Gallager Information Theory and Reliable Communication , 1968 .

[69]  Shen Lin,et al.  Computer Studies of Turing Machine Problems , 1965, JACM.

[70]  V. Glushkov THE ABSTRACT THEORY OF AUTOMATA , 1961 .

[71]  R. W. Owens,et al.  An Algorithm to Solve the Frobenius Problem , 2003 .

[72]  G. Hardy,et al.  Asymptotic formulae in combinatory analysis , 1918 .

[73]  Yehoshua Vitek Bounds for a Linear Diophantine Problem of Frobenius , 1975 .

[74]  Anthony Ralston,et al.  De Bruijn Sequences—A Model Example of the Interaction of Discrete Mathematics and Computer Science , 1982 .

[75]  Gesine Reinert,et al.  Probabilistic and Statistical Properties of Words: An Overview , 2000, J. Comput. Biol..

[76]  Leonard F. Klosinski,et al.  The Sixty-second William Lowell Putnam Mathematical Competition , 2002 .

[77]  M. J. Knight A generalization of a result of Sylvester's , 1980 .

[78]  Sheng Yu,et al.  The State Complexities of Some Basic Operations on Regular Languages , 1994, Theor. Comput. Sci..

[79]  Herbert S. Wilf,et al.  A Circle-of-Lights Algorithm for the “Money-Changing Problem” , 1978 .

[80]  Albert Nijenhuis A Minimal-Path Algorithm for the “Money Changing Problem” , 1979 .

[81]  A. Brauer,et al.  On a problem of Frobenius. , 1962 .

[82]  Ramírez Alfonsin,et al.  The diophantine frobenius problem , 2005 .

[83]  Derick Wood,et al.  Grail: A C++ Library for Automata and Expressions , 1994, J. Symb. Comput..

[84]  Tao Jiang,et al.  A lower bound on the average-case complexity of shellsort , 1999, J. ACM.

[85]  Marshall Hall,et al.  A problem in partitions , 1941 .

[86]  Derick Wood,et al.  On the correspondence between AVL trees and brother trees , 2005, Computing.

[87]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[88]  Endre BOROS On a linear diophantine problem for geometrical type sequences , 1987, Discret. Math..

[89]  Ernst Kunz,et al.  The value-semigroup of a one-dimensional Gorenstein ring , 1970 .

[90]  Manuel Silva Suárez,et al.  On Weighted T-Systems , 1992, Application and Theory of Petri Nets.

[91]  Karel Culik,et al.  State Complexity of Basic Operations on Finite Languages , 1999, WIA.

[92]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[93]  Eugene L. Goldberg On a linear diophantine equation , 1976 .

[94]  Frank E. Grubbs,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[95]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[96]  H. Fredricksen A Survey of Full Length Nonlinear Shift Register Cycle Algorithms , 1982 .

[97]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[98]  Ilan Vardi,et al.  Computational recreations in Mathematica , 1991 .

[99]  Harold Greenberg An algorithm for a linear diophantine equation and a problem of Frobenius , 1980 .

[100]  Laura Giambruno,et al.  The Average State Complexity of the Star of a Finite Set of Words Is Linear , 2008, Developments in Language Theory.

[101]  Cezar Câmpeanu,et al.  The Maximum State Complexity for Finite Languages , 2004, J. Autom. Lang. Comb..

[102]  A. Walfisz Zur additiven Zahlentheorie , 1935 .

[103]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[104]  Mordechai Lewin On a problem of Frobenius for an almost consecutive set of integers. , 1975 .

[105]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[106]  Jeffrey Shallit,et al.  Periodicity, morphisms, and matrices , 2003, Theor. Comput. Sci..

[107]  Marek Raczunas,et al.  A Diophantine problem of Frobenius in terms of the least common multiple , 1996, Discret. Math..

[108]  D. Birkoff Quelques théorèmes sur le mouvement des systèmes dynamiques , 1912 .

[109]  Zdzisław Skupień A generalization of Sylvester's and Frobenius' problems on numerical semigroups , 1993 .

[110]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[111]  B. Harshbarger An Introduction to Probability Theory and its Applications, Volume I , 1958 .

[112]  P. A. Macmahon Applications of a Theory of Permutations in Circular Procession to the Theory of Numbers , 1891 .

[113]  Dominique Perrin,et al.  Parsing with a finite dictionary , 2005, Theor. Comput. Sci..

[114]  Ravi Kannan,et al.  Lattice translates of a polytope and the Frobenius problem , 1992, Comb..

[115]  R. Guy Unsolved Problems in Number Theory , 1981 .

[116]  Darren A. Narayan,et al.  Tiling Large Rectangles , 2002 .

[117]  Leonard F. Klosinski,et al.  The Sixty-Second William Lowell Putnam Mathematical Competition , 2002, Am. Math. Mon..

[118]  Jorge L. Ramírez Alfonsín,et al.  Complexity of the Frobenius Problem , 1996, Comb..

[119]  S. Johnson,et al.  A Linear Diophantine Problem , 1960, Canadian Journal of Mathematics.

[120]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[121]  de Ng Dick Bruijn,et al.  Circuits and Trees in Oriented Linear Graphs , 1951 .

[122]  Piotr Chrzastowski-Wachtel,et al.  Liveness of Weighted Circuits and the Diophantine Problem of Frobenius , 1993, FCT.

[123]  B. R. Heap,et al.  On a linear diophantine problem of Frobenius: an improved algorithm , 1965 .

[124]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[125]  Hans Rohrbach Ein Beitrag zur additiven Zahlentheorie , 1937 .

[126]  Frank Curtis,et al.  On formulas for the Frobenius number of a numerical semigroup. , 1990 .

[127]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[128]  Jean Néraud Elementariness of a finite set of words is co-NP-complete , 1990, RAIRO Theor. Informatics Appl..

[129]  Jeffrey Shallit,et al.  The Frobenius Problem and Its Generalizations , 2008, Developments in Language Theory.

[130]  Zhi Xu,et al.  An NP-hardness Result on the Monoid Frobenius Problem , 2008, ArXiv.

[131]  Frank Thomson Leighton,et al.  Tight Bounds on the Complexity of Parallel Sorting , 1984, IEEE Transactions on Computers.

[132]  Amit Marathe,et al.  On combinatorial DNA word design , 1999, DNA Based Computers.

[133]  J. J. Sylvester,et al.  On Subvariants, i.e. Semi-Invariants to Binary Quantics of an Unlimited Order , 1882 .

[134]  Jeffrey Shallit,et al.  Regular Expressions: New Results and Open Problems , 2004, J. Autom. Lang. Comb..

[135]  Robert Sedgewick,et al.  Improved upper bounds on shellsort , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[136]  B. R. Heap,et al.  A graph-theoretic algorithm for the solution of a linear diophantine problem of frobenius , 1964 .

[137]  Danièle Beauquier Ensembles reconnaissables de mots bi -infinis limite et déterminisme , 1984, Automata on Infinite Words.

[138]  J. S. Byrnes On a Partition Problem of Frobenius , 1974, J. Comb. Theory, Ser. A.

[139]  G. Lallement Semigroups and combinatorial applications , 1979 .

[140]  Sheng Yu,et al.  State Complexity of Regular Languages: Finite versus Infinite , 2000, Finite Versus Infinite.

[141]  Hendrik W. Lenstra,et al.  Primality Testing with Gaussian Periods , 2002, FSTTCS.

[142]  Johan P. Hansen,et al.  Algebraic Geometry Codes , 2005 .

[143]  Jacques Dixmier Proof of a conjecture by Erdős and Graham concerning the problem of Frobenius , 1990 .

[144]  Jeffrey Shallit,et al.  A Second Course in Formal Languages and Automata Theory , 2008 .

[145]  Gerd Hofmeister Remark on linear forms , 1995 .