Strain hardening and transformation mechanism of deformation-induced martensite transformation in metastable austenitic stainless steels

[1]  W. Dahl,et al.  Technological Application of the Martensitic Transformation of some Austenitic Stainless Steels , 1989 .

[2]  M. Bayerlein,et al.  Plasticity-induced martensitic transformation during cyclic deformation of AISI 304L stainless steel , 1989 .

[3]  W. Dahl,et al.  Beschreibung der Fließkurve auf der Basis phänomenologischer Ansätze am Beispiel eines Baustahls , 1988 .

[4]  M. Loretto,et al.  In situ observations of the formation of martensite in stainless steel , 1979 .

[5]  G. B. Olson,et al.  A general mechanism of martensitic nucleation: Part II. FCC → BCC and other martensitic transformations , 1976 .

[6]  G. B. Olson,et al.  A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation , 1976 .

[7]  Morris Cohen,et al.  A general mechanism of martensitic nucleation: Part III. Kinetics of martensitic nucleation , 1976 .

[8]  G. Thomas,et al.  The martensite phases in 304 stainless steel , 1970 .

[9]  G. Thomas,et al.  Structure and properties of thermal-mechanically treated 304 stainless steel , 1970 .

[10]  P. Kelly The martensite transformation in steels with low stacking fault energy , 1965 .

[11]  J. Christian Accommodation strains in martensite formation, and the use of a dilatation parameter , 1958 .

[12]  J. Schlipf Stable and unstable modes in tensile deformation , 1986 .

[13]  Yuri Estrin,et al.  A unified phenomenological description of work hardening and creep based on one-parameter models , 1984 .

[14]  U. F. Kocks Laws for Work-Hardening and Low-Temperature Creep , 1976 .