Parameterized Temperature Scaling for Boosting the Expressive Power in Post-Hoc Uncertainty Calibration

We address the problem of uncertainty calibration and introduce a novel calibration method, Parametrized Temperature Scaling (PTS). Standard deep neural networks typically yield uncalibrated predictions, which can be transformed into calibrated confidence scores using post-hoc calibration methods. In this contribution, we demonstrate that the performance of accuracy-preserving state-ofthe-art post-hoc calibrators is limited by their intrinsic expressive power. We generalize temperature scaling by computing predictionspecific temperatures, parameterized by a neural network. We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.

[1]  Daniel Cremers,et al.  Midrange Geometric Interactions for Semantic Segmentation , 2015, International Journal of Computer Vision.

[2]  Daniel Cremers,et al.  A Super-Resolution Framework for High-Accuracy Multiview Reconstruction , 2013, International Journal of Computer Vision.

[3]  Daniel Cremers,et al.  Variational Segmentation with Shape Priors , 2006, Handbook of Mathematical Models in Computer Vision.

[4]  Hans-Peter Seidel,et al.  A Comparison of Shape Matching Methods for Contour Based Pose Estimation , 2006, IWCIA.

[5]  Daniel Cremers,et al.  Globally Optimal Image Segmentation with an Elastic Shape Prior , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[6]  Roy L. Streit,et al.  A Sequential Monte Carlo Method for Multi-target Tracking with the Intensity Filter , 2013 .

[7]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[8]  Daniel Cremers,et al.  Fast Matching of Planar Shapes in Sub-cubic Runtime , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[9]  Bodo Rosenhahn,et al.  Statistical and Geometrical Approaches to Visual Motion Analysis, International Dagstuhl Seminar, Dagstuhl Castle, Germany, July 13-18, 2008. Revised Papers , 2009, Lecture Notes in Computer Science.

[10]  Daniel Cremers,et al.  Convex Relaxations for Binary Image Partitioning and Perceptual Grouping , 2001, DAGM-Symposium.

[11]  Daniel Cremers,et al.  Performance Evaluation of Narrow Band Methods for Variational Stereo Reconstruction , 2013, GCPR.

[12]  Daniel Cremers,et al.  Propagated Photoconsistency and Convexity in Variational Multiview 3D Reconstruction , 2007 .

[13]  Daniel Cremers,et al.  Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional , 2002, International Journal of Computer Vision.

[14]  Daniel Cremers,et al.  Shape Matching by Variational Computation of Geodesics on a Manifold , 2006, DAGM-Symposium.

[15]  Daniel Cremers,et al.  Near Real-Time Motion Segmentation Using Graph Cuts , 2006, DAGM-Symposium.

[16]  Daniel Cremers,et al.  An Improved Algorithm for TV-L 1 Optical Flow , 2009, Statistical and Geometrical Approaches to Visual Motion Analysis.

[17]  Daniel Cremers,et al.  Sequential Convex Relaxation for Mutual Information-Based Unsupervised Figure-Ground Segmentation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Daniel Cremers,et al.  The Natural Total Variation Which Arises from Geometric Measure Theory , 2012 .

[19]  Daniel Cremers,et al.  Image segmentation with one shape prior - A template-based formulation , 2012, Image Vis. Comput..

[20]  Daniel Cremers,et al.  A variational framework for image segmentation combining motion estimation and shape regularization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[21]  Daniel Cremers,et al.  Total Cyclic Variation and Generalizations , 2013, Journal of Mathematical Imaging and Vision.

[22]  D. Cremers,et al.  Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[23]  Daniel Cremers,et al.  Parallel Generalized Thresholding Scheme for Live Dense Geometry from a Handheld Camera , 2010, ECCV Workshops.

[24]  Daniel Cremers,et al.  Total variation for cyclic structures: Convex relaxation and efficient minimization , 2011, CVPR 2011.

[25]  Daniel Cremers,et al.  A Generative Model Based Approach to Motion Segmentation , 2003, DAGM-Symposium.

[26]  Daniel Cremers,et al.  Learning by Association — A Versatile Semi-Supervised Training Method for Neural Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Daniel Cremers,et al.  Convex Relaxation of Vectorial Problems with Coupled Regularization , 2014, SIAM J. Imaging Sci..

[28]  Bianca Zadrozny,et al.  Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers , 2001, ICML.

[29]  Bianca Zadrozny,et al.  Transforming classifier scores into accurate multiclass probability estimates , 2002, KDD.

[30]  Tengyu Ma,et al.  Verified Uncertainty Calibration , 2019, NeurIPS.

[31]  Daniel Cremers,et al.  3-D Reconstruction of Shaded Objects from Multiple Images Under Unknown Illumination , 2008, International Journal of Computer Vision.

[32]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[33]  Daniel Cremers,et al.  Real-time variational stereo reconstruction with applications to large-scale dense SLAM , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[34]  T. Brox,et al.  Nonlocal texture filtering with efficient tree structures and invariant patch similarity measures , 2008 .

[35]  Daniel Cremers,et al.  Tight Convex Relaxations for Vector-Valued Labeling , 2013, SIAM J. Imaging Sci..

[36]  Daniel Cremers,et al.  What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation? , 2018, International Journal of Computer Vision.

[37]  Bodo Rosenhahn,et al.  Contours, Optic Flow, and Prior Knowledge: Cues for Capturing 3D Human Motion in Videos , 2006, Human Motion.

[38]  Andrew Blake,et al.  Energy Minimization Methods for Computer Vision and Pattern Recognition (EMMCVPR) , 2009 .

[39]  Daniel Cremers,et al.  Dynamic texture segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[40]  Daniel Cremers,et al.  Bayesian Approaches to Motion-Based Image and Video Segmentation , 2004, IWCM.

[41]  Daniel Cremers,et al.  Pixel-based classification method for detecting unhealthy regions in leaf images , 2011, GI-Jahrestagung.

[42]  Daniel Cremers,et al.  Statistical shape knowledge in variational image segmentation , 2002 .

[43]  Ashwini C Reddy,et al.  Journal Articles , 1983, A-Z Common Reference Questions for Academic Librarians.

[44]  Daniel Cremers,et al.  4D Shape Priors for a Level Set Segmentation of the Left Myocardium in SPECT Sequences , 2006, MICCAI.

[45]  D. Cremers,et al.  The Elastic Ratio: Introducing Curvature into Ratio-based Globally Optimal Image Segmentation , 2009 .

[46]  Daniel Cremers,et al.  Dynamical statistical shape priors for level set-based tracking , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Daniel Cremers,et al.  Surface Normal Integration for Convex Space-time Multi-view Reconstruction , 2014, BMVC.

[48]  Michael Möller,et al.  Spectral Decompositions Using One-Homogeneous Functionals , 2016, SIAM J. Imaging Sci..

[49]  Daniel Cremers,et al.  High resolution motion layer decomposition using dual-space graph cuts , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Bodo Rosenhahn,et al.  Nonparametric Density Estimation for Human Pose Tracking , 2006, DAGM-Symposium.

[51]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[52]  Daniel Cremers,et al.  Efficient Online Surface Correction for Real-time Large-Scale 3D Reconstruction , 2017, BMVC.

[53]  Daniel Cremers,et al.  A convex representation for the vectorial Mumford-Shah functional , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Anita Sellent,et al.  Motion Field Estimation from Alternate Exposure Images , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Daniel Cremers,et al.  Detection and Segmentation of Independently Moving Objects from Dense Scene Flow , 2009, EMMCVPR.

[56]  Jonas Geiping,et al.  Multiframe Motion Coupling for Video Super Resolution , 2016, EMMCVPR.

[57]  Milos Hauskrecht,et al.  Obtaining Well Calibrated Probabilities Using Bayesian Binning , 2015, AAAI.

[58]  Daniel Cremers,et al.  Kernel Density Estimation and Intrinsic Alignment for Knowledge-Driven Segmentation: Teaching Level Sets to Walk , 2004, DAGM-Symposium.

[59]  Daniel Cremers,et al.  Proportion Priors for Image Sequence Segmentation , 2013, 2013 IEEE International Conference on Computer Vision.

[60]  Michael Möller,et al.  Collaborative Total Variation: A General Framework for Vectorial TV Models , 2015, SIAM J. Imaging Sci..

[61]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[62]  Roy L. Streit,et al.  Sequential Monte Carlo method for the iFilter , 2011, 14th International Conference on Information Fusion.

[63]  Daniel Cremers,et al.  Towards Illumination-Invariant 3D Reconstruction Using ToF RGB-D Cameras , 2014, 2014 2nd International Conference on 3D Vision.

[64]  Daniel Cremers,et al.  An image classification approach to analyze the suppression of plant immunity by the human pathogen Salmonella Typhimurium , 2012, BMC Bioinformatics.

[65]  Daniel Cremers,et al.  Non-parametric Single View Reconstruction of Curved Objects Using Convex Optimization , 2009, DAGM-Symposium.

[66]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[67]  Geoffrey E. Hinton,et al.  Keeping the neural networks simple by minimizing the description length of the weights , 1993, COLT '93.

[68]  Daniel Cremers,et al.  Generalized ordering constraints for multilabel optimization , 2011, 2011 International Conference on Computer Vision.

[69]  Daniel Cremers,et al.  Globally optimal shape-based tracking in real-time , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[70]  Daniel Cremers,et al.  On Local Region Models and the Statistical Interpretation of the Piecewise Smooth Mumford-shah Functional , 2007 .

[71]  Daniel Cremers,et al.  Probabilistic kernel PCA and its application to statistical shape modeling and inference , 2006 .

[72]  Daniel Cremers,et al.  Continuous Global Optimization in Multiview 3D Reconstruction , 2007, International Journal of Computer Vision.

[73]  Daniel Cremers,et al.  Large‐Scale Integer Linear Programming for Orientation Preserving 3D Shape Matching , 2011, Comput. Graph. Forum.

[74]  Daniel Cremers,et al.  Shedding light on stereoscopic segmentation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[75]  Daniel Cremers,et al.  Unsupervised Image Partitioning with Semidefinite Programming , 2002, DAGM-Symposium.

[76]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[77]  Andrew W. Fitzgibbon,et al.  Model-Based Tracking at 300Hz Using Raw Time-of-Flight Observations , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[78]  Armin B. Cremers,et al.  Adaptive Multi-cue 3D Tracking of Arbitrary Objects , 2012, DAGM/OAGM Symposium.

[79]  Daniel Cremers,et al.  Label Configuration Priors for Continuous Multi-Label Optimization , 2012 .

[80]  Daniel Cremers,et al.  Kernel Density Estimation and Intrinsic Alignment for Shape Priors in Level Set Segmentation , 2006, International Journal of Computer Vision.

[81]  Hans-Peter Seidel,et al.  Online Smoothing for Markerless Motion Capture , 2007, DAGM-Symposium.

[82]  Yasuo Kuniyoshi,et al.  Efficient Shape Matching using Vector Extrapolation , 2013, BMVC.

[83]  Daniel Cremers,et al.  Nonlinear Shape Statistics in Mumford-Shah Based Segmentation , 2002, ECCV.

[84]  Daniel Cremers,et al.  An Unbiased Second-Order Prior for High-Accuracy Motion Estimation , 2008, DAGM-Symposium.

[85]  Daniel Cremers,et al.  Robust Fitting of Subdivision Surfaces for Smooth Shape Analysis , 2018, 2018 International Conference on 3D Vision (3DV).

[86]  Daniel Cremers,et al.  Real-time visual odometry from dense RGB-D images , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[87]  Daniel Cremers,et al.  A Variational Approach to Shape-from-Shading Under Natural Illumination , 2017, EMMCVPR.

[88]  Daniel Cremers,et al.  Large-Scale Multi-resolution Surface Reconstruction from RGB-D Sequences , 2013, 2013 IEEE International Conference on Computer Vision.

[89]  Daniel Cremers,et al.  Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[90]  Daniel Cremers,et al.  On a Linear Programming Approach to the Discrete Willmore Boundary Value Problem and Generalizations , 2010, Curves and Surfaces.

[91]  Daniel Cremers,et al.  Multiple source localization based on biased bearings using the intensity filter - approach and experimental results , 2011, 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[92]  Daniel Cremers,et al.  Superresolution texture maps for multiview reconstruction , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[93]  Michael Möller,et al.  A Novel Framework for Nonlocal Vectorial Total Variation Based on ℓ p, q, r -norms , 2015, EMMCVPR.

[94]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[95]  Daniel Cremers,et al.  Integral Invariants for Shape Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  Daniel Cremers,et al.  A Closed-Form Solution for Image Sequence Segmentation with Dynamical Shape Priors , 2009, DAGM-Symposium.

[97]  Daniel Cremers,et al.  Dense Multi-view 3D-reconstruction Without Dense Correspondences , 2017, ArXiv.

[98]  Daniel Cremers,et al.  Statistical shape knowledge in variational motion segmentation , 2003, Image Vis. Comput..

[99]  Alex Graves,et al.  Practical Variational Inference for Neural Networks , 2011, NIPS.

[100]  Daniel Cremers,et al.  Motion Competition: A variational framework for piecewise parametric motion segmentation , 2005 .

[101]  Daniel Cremers,et al.  Robust Region Detection via Consensus Segmentation of Deformable Shapes , 2014, Comput. Graph. Forum.

[102]  Daniel Cremers,et al.  An approach to vectorial total variation based on geometric measure theory , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[103]  Daniel Cremers,et al.  A Multiphase Dynamic Labeling Model for Variational Recognition-driven Image Segmentation , 2005, International Journal of Computer Vision.

[104]  Daniel Cremers,et al.  Introducing total curvature for image processing , 2011, 2011 International Conference on Computer Vision.

[105]  Daniel Cremers,et al.  One-Shot Integral Invariant Shape Priors for Variational Segmentation , 2005, EMMCVPR.

[106]  Daniel Cremers,et al.  Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling , 2003, Scale-Space.

[107]  D. Cremers,et al.  Learning Translation Invariant Shape Knowledge for Steering Diffusion-Snakes , 2000 .

[108]  Daniel Cremers,et al.  Introducing Curvature into Globally Optimal Image Segmentation: Minimum Ratio Cycles on Product Graphs , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[109]  Daniel Cremers,et al.  FollowMe: Person following and gesture recognition with a quadrocopter , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[110]  Daniel Cremers,et al.  Direct Reconstruction of the Average Diffusion Propagator with Simultaneous Compressed-Sensing-Accelerated Diffusion Spectrum Imaging and Image Denoising by Means of Total Generalized Variation Regularization , 2014 .

[111]  Daniel Cremers,et al.  Geometrically consistent elastic matching of 3D shapes: A linear programming solution , 2011, 2011 International Conference on Computer Vision.

[112]  D. Cremers,et al.  Diffusion-Snakes Using Statistical Shape Knowledge , 2000, Algebraic Frames for the Perception-Action Cycle.

[113]  Daniel Cremers,et al.  Camera-based navigation of a low-cost quadrocopter , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[114]  Daniel Bender,et al.  INS-camera calibration without ground control points , 2014, 2014 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[115]  Michael Möller,et al.  Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[116]  Daniel Cremers,et al.  Decoupling photometry and geometry in dense variational camera calibration , 2011, 2011 International Conference on Computer Vision.

[117]  Dejan Pangercic,et al.  A generalized framework for opening doors and drawers in kitchen environments , 2012, 2012 IEEE International Conference on Robotics and Automation.

[118]  Daniel Cremers,et al.  Variational space-time motion segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[119]  D. Cremers,et al.  Relaxations for Minimizing Metric Distortion and Elastic Energies for 3D Shape Matching , 2013 .

[120]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[121]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[122]  Daniel Cremers,et al.  Generalized Roof Duality for Multi-Label Optimization: Optimal Lower Bounds and Persistency , 2012, ECCV.

[123]  Daniel Cremers,et al.  Environment-Adaptive Learning: How Clustering Helps to Obtain Good Training Data , 2014, KI.

[124]  Daniel Cremers,et al.  Nonlinear Dynamical Shape Priors for Level Set Segmentation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[125]  Daniel Cremers,et al.  An Integral Solution to Surface Evolution PDEs Via Geo-cuts , 2006, ECCV.

[126]  Daniel Cremers,et al.  Anisotropic Laplace-Beltrami Operators for Shape Analysis , 2014, ECCV Workshops.

[127]  Daniel Cremers,et al.  Probabilistic Classification of Disease symptoms caused by Salmonella on Arabidopsis Plants , 2010, GI Jahrestagung.

[128]  Daniel Cremers,et al.  WarpCut - Fast Obstacle Segmentation in Monocular Video , 2007, DAGM-Symposium.

[129]  Jörg Stückler,et al.  Motion Cooperation: Smooth Piece-wise Rigid Scene Flow from RGB-D Images , 2015, 2015 International Conference on 3D Vision.

[130]  Daniel Cremers,et al.  Visual-Inertial Navigation for a Camera-Equipped 25g Nano-Quadrotor , 2014 .

[131]  Daniel Cremers,et al.  Multi-object tracking via high accuracy optical flowand finite set statistics , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[132]  Daniel Cremers,et al.  A Co-occurrence Prior for Continuous Multi-label Optimization , 2013, EMMCVPR.

[133]  Daniel Cremers,et al.  Wehrli 2.0: An Algorithm for "Tidying up Art" , 2012, ECCV Workshops.

[134]  Daniel Cremers,et al.  Image Segmentation with Shape Priors: Explicit Versus Implicit Representations , 2015, Handbook of Mathematical Methods in Imaging.

[135]  Daniel Cremers,et al.  Passive multi-object localization and tracking using bearing data , 2010, 2010 13th International Conference on Information Fusion.

[136]  Daniel Cremers,et al.  Accurate Figure Flying with a Quadrocopter Using Onboard Visual and Inertial Sensing , 2012 .

[137]  Daniel Cremers,et al.  A Linear Framework for Region-Based Image Segmentation and Inpainting Involving Curvature Penalization , 2011, International Journal of Computer Vision.

[138]  Daniel Cremers,et al.  Matching non-rigidly deformable shapes across images: A globally optimal solution , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[139]  Daniel Cremers,et al.  A GRAPH BASED BUNDLE ADJUSTMENT FOR INS-CAMERA CALIBRATION , 2013 .

[140]  Michael Möller,et al.  Regularized Pointwise Map Recovery from Functional Correspondence , 2017, Comput. Graph. Forum.

[141]  Daniel Cremers,et al.  Pose-Consistent 3D Shape Segmentation Based on a Quantum Mechanical Feature Descriptor , 2011, DAGM-Symposium.

[142]  Daniel Cremers,et al.  Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[143]  Daniel Cremers,et al.  Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation , 2004, ECCV.

[144]  Daniel Cremers,et al.  Efficient planar graph cuts with applications in Computer Vision , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[145]  Stefano Soatto,et al.  A Pseudo-distance for Shape Priors in Level Set Segmentation , 2003 .

[146]  Daniel Cremers,et al.  Map-based drone homing using shortcuts , 2017, 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).

[147]  Daniel Cremers,et al.  A Combinatorial Solution to Non-Rigid 3D Shape-to-Image Matching , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[148]  Hans-Peter Seidel,et al.  Markerless motion capture of man-machine interaction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[149]  Daniel Cremers,et al.  Direct Camera Pose Tracking and Mapping With Signed Distance Functions , 2013, RSS 2013.

[150]  Daniel Cremers,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 a Combinatorial Solution for Model-based Image Segmentation and Real-time Tracking , 2022 .

[151]  Ariel D. Procaccia,et al.  Variational Dropout and the Local Reparameterization Trick , 2015, NIPS.

[152]  Daniel Cremers,et al.  Image Segmentation with Elastic Shape Priors via Global Geodesics in Product Spaces , 2008, BMVC.

[153]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[154]  Daniel Cremers,et al.  Collision Avoidance for Quadrotors with a Monocular Camera , 2014, ISER.

[155]  Dejan Pangercic,et al.  Introduction to the special issue on visual understanding and applications with RGB-D cameras , 2014, J. Vis. Commun. Image Represent..

[156]  Daniel Cremers,et al.  A convex approach for computing minimal partitions , 2008 .

[157]  Daniel Cremers,et al.  Multitarget, multisensor localization and tracking using passive antennas and optical sensors on UAVs , 2010, Security + Defence.

[158]  Daniel Cremers,et al.  Nonparametric Priors on the Space of Joint Intensity Distributions for Non-Rigid Multi-Modal Image Registration , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[159]  Daniel Cremers,et al.  Consistent Partial Matching of Shape Collections via Sparse Modeling , 2017, Comput. Graph. Forum.

[160]  Daniel Cremers,et al.  Silhouette-Based Variational Methods for Single View Reconstruction , 2010, Video Processing and Computational Video.

[161]  Daniel Cremers,et al.  Moment Constraints in Convex Optimization for Segmentation and Tracking , 2013, Advanced Topics in Computer Vision.

[162]  Daniel Cremers,et al.  Optimal Intrinsic Descriptors for Non-Rigid Shape Analysis , 2014, BMVC.

[163]  Daniel Cremers,et al.  A Non-convex Variational Approach to Photometric Stereo under Inaccurate Lighting , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[164]  Daniel Cremers,et al.  On the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional , 2007, SSVM.

[165]  Bhavya Kailkhura,et al.  Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning , 2020, ICML.

[166]  Daniel Cremers,et al.  Motion Competition: Variational Integration of Motion Segmentation and Shape Regularization , 2002, DAGM-Symposium.

[167]  Daniel Cremers,et al.  Associative Domain Adaptation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[168]  Daniel Cremers,et al.  Semi-Joint Reconstruction for Diffusion MRI Denoising Imposing Similarity of Edges in Similar Diffusion-Weighted Images , 2014 .

[169]  Wolfram Burgard,et al.  Towards a benchmark for RGB-D SLAM evaluation , 2011, RSS 2011.

[170]  Daniel Cremers,et al.  Spatially Varying Color Distributions for Interactive Multilabel Segmentation , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[171]  Kilian Q. Weinberger,et al.  On Calibration of Modern Neural Networks , 2017, ICML.

[172]  Jörg Stückler,et al.  Reconstructing Street-Scenes in Real-Time from a Driving Car , 2015, 2015 International Conference on 3D Vision.

[173]  Daniel Cremers,et al.  Stereoscopic Scene Flow for 3D Motion Analysis , 2011 .

[174]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[175]  Daniel Cremers,et al.  A variational approach to vesicle membrane reconstruction from fluorescence imaging , 2011, Pattern Recognit..

[176]  Daniel Cremers,et al.  Efficient Shape Matching Via Graph Cuts , 2007, EMMCVPR.

[177]  Daniel Cremers,et al.  Fast Joint Estimation of Silhouettes and Dense 3D Geometry from Multiple Images , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[178]  Daniel Cremers,et al.  Iterated Nonlocal Means for Texture Restoration , 2007, SSVM.

[179]  Daniel Cremers,et al.  Sequential Convex Programming for Computing Information-Theoretic Minimal Partitions: Nonconvex Nonsmooth Optimization , 2017, SIAM J. Imaging Sci..

[180]  Michael Möller,et al.  Nonlinear Spectral Image Fusion , 2017, SSVM.

[181]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[182]  Hans-Peter Seidel,et al.  Nonparametric Density Estimation with Adaptive, Anisotropic Kernels for Human Motion Tracking , 2007, Workshop on Human Motion.

[183]  Daniel Cremers,et al.  A Convex Approach to Minimal Partitions , 2012, SIAM J. Imaging Sci..

[184]  Daniel Cremers,et al.  A Survey and Comparison of Discrete and Continuous Multi-label Optimization Approaches for the Potts Model , 2013, International Journal of Computer Vision.

[185]  Daniel Cremers,et al.  Learning Similarities for Rigid and Non-rigid Object Detection , 2014, 2014 2nd International Conference on 3D Vision.

[186]  Daniel Cremers,et al.  Dense Elastic 3D Shape Matching , 2011, Efficient Algorithms for Global Optimization Methods in Computer Vision.

[187]  Daniel Cremers,et al.  Improved Diffusion Kurtosis Imaging and Direct Propagator Estimation Using 6-D Compressed Sensing , 2014 .

[188]  Daniel Cremers,et al.  Fast and globally optimal single view reconstruction of curved objects , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[189]  Daniel Cremers,et al.  Global Solutions of Variational Models with Convex Regularization , 2010, SIAM J. Imaging Sci..

[190]  D. Cremers Convex Relaxation Techniques for Segmentation , Stereo and Multiview Reconstruction , 2010 .

[191]  Daniel Cremers,et al.  Realtime Depth Estimation and Obstacle Detection from Monocular Video , 2006, DAGM-Symposium.

[192]  Daniel Cremers,et al.  Entropy Minimization for Convex Relaxation Approaches , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[193]  Christopher J. Hardy,et al.  Noise Reduction in Accelerated Diffusion Spectrum Imaging through Integration of SENSE Reconstruction into Joint Reconstruction in Combination with q-Space Compressed Sensing , 2013 .

[194]  Michael Möller,et al.  Point-wise Map Recovery and Refinement from Functional Correspondence , 2015, VMV.

[195]  Thomas Brox,et al.  Modeling and Tracking Line-Constrained Mechanical Systems , 2008, RobVis.

[196]  Daniel Cremers,et al.  Video Super Resolution Using Duality Based TV-L1 Optical Flow , 2009, DAGM-Symposium.

[197]  Daniel Cremers,et al.  Total Variation Regularization for Functions with Values in a Manifold , 2013, 2013 IEEE International Conference on Computer Vision.

[198]  Daniel Cremers,et al.  The Double Sphere Camera Model , 2018, 2018 International Conference on 3D Vision (3DV).

[199]  Bodo Rosenhahn,et al.  Region-Based Pose Tracking , 2007, IbPRIA.

[200]  Yasuo Kuniyoshi,et al.  Elastic Net Constraints for Shape Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[201]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[202]  Daniel Cremers,et al.  A Coding-Cost Framework for Super-Resolution Motion Layer Decomposition , 2012, IEEE Transactions on Image Processing.

[203]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[204]  Daniel Cremers,et al.  Advanced Data Terms for Variational Optic Flow Estimation , 2009, VMV.

[205]  Daniel Cremers,et al.  Real-time human motion tracking using multiple depth cameras , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[206]  Daniel Cremers,et al.  A multiphase level set framework for variational motion segmentation , 2003 .

[207]  Daniel Cremers,et al.  Real-Time Dense Geometry from a Handheld Camera , 2010, DAGM-Symposium.

[208]  M. Bronstein,et al.  SHREC’16: Matching of Deformable Shapes with Topological Noise , 2016 .

[209]  Daniel Cremers,et al.  Semi-dense Visual Odometry for a Monocular Camera , 2013, 2013 IEEE International Conference on Computer Vision.

[210]  Jürgen Sturm,et al.  Evaluating Egomotion and Structure-from-Motion Approaches Using the TUM RGB-D Benchmark , 2012 .

[211]  Daniel Cremers,et al.  Nonlinear Shape Statistics via Kernel Spaces , 2001, DAGM-Symposium.

[212]  Daniel Cremers,et al.  Stereoscopic Scene Flow Computation for 3D Motion Understanding , 2011, International Journal of Computer Vision.

[213]  Daniel Cremers,et al.  Traveling Waves of Excitation in Neural Field Models: Equivalence of Rate Descriptions and Integrate-and-Fire Dynamics , 2002, Neural Computation.

[214]  Daniel Cremers,et al.  Semi-supervised online learning for efficient classification of objects in 3D data streams , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[215]  Daniel Cremers,et al.  Efficient Nonlocal Means for Denoising of Textural Patterns , 2008, IEEE Transactions on Image Processing.

[216]  Daniel Cremers,et al.  Efficient Convex Optimization for Minimal Partition Problems with Volume Constraints , 2013, EMMCVPR.

[217]  Daniel Cremers,et al.  Tight convex relaxations for vector-valued labeling problems , 2011, 2011 International Conference on Computer Vision.

[218]  Daniel Cremers,et al.  Robust Variational Segmentation of 3D Objects from Multiple Views , 2006, DAGM-Symposium.

[219]  Daniel Cremers,et al.  Scale-aware navigation of a low-cost quadrocopter with a monocular camera , 2014, Robotics Auton. Syst..

[220]  Daniel Cremers,et al.  Flow and Color Inpainting for Video Completion , 2014, GCPR.

[221]  Daniel Cremers,et al.  Optimal solutions for semantic image decomposition , 2012, Image Vis. Comput..

[222]  Daniel Cremers,et al.  Multiview Stereo and Silhouette Consistency via Convex Functionals over Convex Domains , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[223]  Hans-Peter Seidel,et al.  High Accuracy Optical Flow Serves 3-D Pose Tracking: Exploiting Contour and Flow Based Constraints , 2006, ECCV.

[224]  Daniel Cremers,et al.  A probabilistic level set formulation for interactive organ segmentation , 2007, SPIE Medical Imaging.

[225]  Daniel Cremers,et al.  B-Spline Modeling of Road Surfaces With an Application to Free-Space Estimation , 2009, IEEE Transactions on Intelligent Transportation Systems.

[226]  Daniel Cremers,et al.  Efficient Kernel Density Estimation of Shape and Intensity Priors for Level Set Segmentation , 2005, MICCAI.

[227]  Daniel Cremers,et al.  Beyond connecting the dots: A polynomial-time algorithm for segmentation and boundary estimation with imprecise user input , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[228]  Daniel Cremers,et al.  Joint Super-Resolution Using Only One Anisotropic Low-Resolution Image per q-Space Coordinate , 2014 .

[229]  Daniel Cremers,et al.  Tree Shape Priors with Connectivity Constraints Using Convex Relaxation on General Graphs , 2013, ICCV.

[230]  Wolfram Burgard,et al.  Interactive Person Following and Gesture Recognition with a Flying Robot , 2013 .

[231]  Jörg Stückler,et al.  Dense Continuous-Time Tracking and Mapping with Rolling Shutter RGB-D Cameras , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[232]  Daniel Cremers,et al.  A convex framework for image segmentation with moment constraints , 2011, 2011 International Conference on Computer Vision.

[233]  Daniel Cremers,et al.  Large displacement optical flow computation withoutwarping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[234]  Anita Sellent,et al.  Variational Optical Flow from Alternate Exposure Images , 2009, VMV.

[235]  Daniel Cremers,et al.  Computer Vision für 3-D-Rekonstruktion , 2017, Informatik-Spektrum.

[236]  Daniel Cremers,et al.  Establishment of an interdisciplinary workflow of machine learning-based Radiomics in sarcoma patients , 2017 .

[237]  Michael Möller,et al.  Sublabel–Accurate Relaxation of Nonconvex Energies , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[238]  Quoc V. Le,et al.  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks , 2019, ICML.

[239]  Marcin J. Skwark,et al.  Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images , 2016, NIPS.

[240]  Bodo Rosenhahn,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Combined Region-and Motion-based 3d Tracking of Rigid and Articulated Objects , 2022 .