Recent advances in the engineering of nanosized active pharmaceutical ingredients: Promises and challenges.

The advances in the field of nanotechnology have revolutionized the field of delivery of poorly soluble active pharmaceutical ingredients (APIs). Nanosized formulations have been extensively investigated to achieve a rapid dissolution and therefore pharmacokinetic properties similar to those observed in solutions. The present review outlines the recent advances, promises and challenges of the engineering nanosized APIs. The principles, merits, demerits and applications of the current 'bottom-up' and 'top-down' technologies by which the state of the art nanosized APIs can be produced were described. Although the number of research reports on the nanoparticle engineering topic has been growing in the last decade, the challenge is to take numerous research outcomes and convert them into strategies for the development of marketable products.

[1]  K. Amighi,et al.  Preparation and in vitro/in vivo evaluation of nano-sized crystals for dissolution rate enhancement of ucb-35440-3, a highly dosed poorly water-soluble weak base. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[2]  S. Baumgartner,et al.  Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. , 2006, International journal of pharmaceutics.

[3]  Abu T M Serajuddin,et al.  Salt formation to improve drug solubility. , 2007, Advanced drug delivery reviews.

[4]  K. Johnston,et al.  Rapid Expansion from Supercritical to Aqueous Solution to Produce Submicron Suspensions of Water‐Insoluble Drugs , 2000, Biotechnology progress.

[5]  Brian G Trewyn,et al.  Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. , 2007, Nanomedicine.

[6]  E. Reverchon,et al.  Supercritical fluids applications in nanomedicine , 2015 .

[7]  Kiyohiko Sugano,et al.  Possible reduction of effective thickness of intestinal unstirred water layer by particle drifting effect. , 2010, International journal of pharmaceutics.

[8]  R. Müller,et al.  Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. , 2004, International journal of pharmaceutics.

[9]  Y. M. Rao,et al.  Formulation of Nanosuspensions of Albendazole for Oral Administration , 2008 .

[10]  S. Gour,et al.  Manufacturing Nanosized Fenofibrate by Salt Assisted Milling , 2009, Pharmaceutical Research.

[11]  Jeffrey W Card,et al.  Pulmonary applications and toxicity of engineered nanoparticles. , 2008, American journal of physiology. Lung cellular and molecular physiology.

[12]  R. Müller,et al.  Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. , 2002, Advanced drug delivery reviews.

[13]  H. Uchida,et al.  Production of theophylline nanoparticles using rapid expansion of supercritical solutions with a solid cosolvent (RESS-SC) technique , 2015 .

[14]  G Vergnault,et al.  Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. , 2007, Advanced drug delivery reviews.

[15]  G. Liversidge,et al.  Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats , 1995 .

[16]  Anna Nordmark,et al.  A formulation comparison between micro- and nanosuspensions: the importance of particle size for absorption of a model compound, following repeated oral administration to rats during early development , 2011, Drug development and industrial pharmacy.

[17]  Sanjay Garg,et al.  Effect of wet milling process on the solid state of indomethacin and simvastatin. , 2009, International journal of pharmaceutics.

[18]  Y. Kawashima,et al.  Engineering of poly(DL-lactic-co-glycolic acid) nanocomposite particles for dry powder inhalation dosage forms of insulin with the spray-fluidized bed granulating system , 2007 .

[19]  A. Badawi,et al.  Formulation and Stability Testing of Itraconazole Crystalline Nanoparticles , 2011, AAPS PharmSciTech.

[20]  Siling Wang,et al.  Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation , 2012, Drug development and industrial pharmacy.

[21]  Li Yang,et al.  Rod shaped nanocrystals exhibit superior in vitro dissolution and in vivo bioavailability over spherical like nanocrystals: a case study of lovastatin. , 2015, Colloids and surfaces. B, Biointerfaces.

[22]  Kikuo Okuyama,et al.  Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. , 2003, Journal of colloid and interface science.

[23]  K. Amighi,et al.  Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. , 2005, International journal of pharmaceutics.

[24]  C. Barbé,et al.  Silica Particles: A Novel Drug‐Delivery System , 2004 .

[25]  I. Ghosh,et al.  Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. , 2011, International journal of pharmaceutics.

[26]  Jonghwi Lee,et al.  Redispersible drug nanoparticles prepared without dispersant by electro-spray drying , 2012, Drug development and industrial pharmacy.

[27]  Huixia Lv,et al.  Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal. , 2011, International journal of pharmaceutics.

[28]  T. De Beer,et al.  Formulation of itraconazole nanococrystals and evaluation of their bioavailability in dogs. , 2014, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[29]  Moritz Beck-Broichsitter,et al.  Characterization of novel spray-dried polymeric particles for controlled pulmonary drug delivery. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[30]  S. Onoue,et al.  Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. , 2010, Journal of pharmaceutical sciences.

[31]  E. Souto,et al.  Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. , 2011, Colloids and surfaces. B, Biointerfaces.

[32]  K. Moribe,et al.  Co-grinding with Cyclodextrin as a Nanoparticle Preparation Method of a Poorly Water Soluble Drug , 2004 .

[33]  R. Cavalli,et al.  Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations , 2015, Expert opinion on drug delivery.

[34]  S. Stainmesse,et al.  Freeze-drying of nanoparticles: formulation, process and storage considerations. , 2006, Advanced drug delivery reviews.

[35]  Jianfeng Chen,et al.  Production of salbutamol sulfate for inhalation by high-gravity controlled antisolvent precipitation. , 2007, International journal of pharmaceutics.

[36]  Cordin Arpagaus,et al.  Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[37]  Qiang Zhang,et al.  Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. , 2001, International journal of pharmaceutics.

[38]  Rainer H. Müller,et al.  Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique , 1998 .

[39]  R. Müller,et al.  Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. , 2002, International journal of pharmaceutics.

[40]  Chang Ming Li,et al.  Solubility enhancement of a poorly water-soluble anti-malarial drug: experimental design and use of a modified multifluid nozzle pilot spray drier. , 2009, Journal of pharmaceutical sciences.

[41]  M. Sugimoto,et al.  Improvement of dissolution characteristics and bioavailability of poorly water-soluble drugs by novel cogrinding method using water-soluble polymer , 1998 .

[42]  G. Liversidge,et al.  Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs , 1995 .

[43]  Michael Türk,et al.  Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents , 2002 .

[44]  Christos Reppas,et al.  Biorelevant in vitro dissolution testing of products containing micronized or nanosized fenofibrate with a view to predicting plasma profiles. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[45]  C. Remuñán-López,et al.  Microencapsulated chitosan nanoparticles for lung protein delivery. , 2005, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[46]  Vijay Kumar,et al.  Cyclodextrin complexation: influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. , 2002, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[47]  Amrit Paudel,et al.  Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. , 2013, International journal of pharmaceutics.

[48]  M. Márquez,et al.  Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets , 2002, Science.

[49]  Jing Wang,et al.  Mesoporous Silica‐Coated Gold Nanorods as a Light‐Mediated Multifunctional Theranostic Platform for Cancer Treatment , 2012, Advanced materials.

[50]  Rainer H Müller,et al.  Development of an oral rutin nanocrystal formulation. , 2009, International journal of pharmaceutics.

[51]  E. Merisko-Liversidge,et al.  Drug Nanoparticles: Formulating Poorly Water-Soluble Compounds , 2008, Toxicologic pathology.

[52]  W. Wildeboer,et al.  Study of the process of stirred ball milling of poorly water soluble organic products using factorial design , 2010 .

[53]  Jennifer Jung,et al.  Particle design using supercritical fluids: Literature and patent survey , 2001 .

[54]  S. Gour,et al.  Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. , 2010, ACS applied materials & interfaces.

[55]  E. Cesari,et al.  Amorphization of organic compounds by ball milling , 1997 .

[56]  Herbert Freundlich,et al.  Colloid and capillary chemistry , 1922 .

[57]  K. Higashi,et al.  Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system. , 2009, International journal of pharmaceutics.

[58]  Sadhna Sharma,et al.  Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. , 2005, International journal of antimicrobial agents.

[59]  V. Mohanraj,et al.  Nanoparticles - A Review , 2007 .

[60]  Jing Ma,et al.  Preparation of a chemically stable quercetin formulation using nanosuspension technology. , 2011, International journal of pharmaceutics.

[61]  Indrajit Ghosh,et al.  Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[62]  K. Eid,et al.  Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler , 2011, International journal of nanomedicine.

[63]  F. Vrečer,et al.  Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs , 2013, Acta pharmaceutica.

[64]  Huibi Xu,et al.  Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. , 2011, International journal of pharmaceutics.

[65]  R. Wiwattanapatapee,et al.  Preparation and evaluation of Bacillus megaterium-alginate microcapsules for control of rice sheath blight disease , 2013, World journal of microbiology & biotechnology.

[66]  D. Lamprou,et al.  Preparation and characterization of ibuprofen solid lipid nanoparticles with enhanced solubility , 2011, Journal of microencapsulation.

[67]  Hongwei Wang,et al.  Paclitaxel nanosuspensions coated with P-gp inhibitory surfactants: I. Acute toxicity and pharmacokinetics studies. , 2013, Colloids and surfaces. B, Biointerfaces.

[68]  B. Sarmento,et al.  Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. , 2007, Drug discovery today.

[69]  J. Remon,et al.  An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen. , 2001, International journal of pharmaceutics.

[70]  Hirst,et al.  Development of a new engineering-based capsule for human drug absorption studies. , 2000, Pharmaceutical science & technology today.

[71]  A. Mujumdar Handbook of Industrial Drying , 2020 .

[72]  Yuan Le,et al.  Preparation of ultrafine beclomethasone dipropionate drug powder by antisolvent precipitation , 2007 .

[73]  Jie-xin Wang,et al.  Preparation of azithromycin nanosuspensions by reactive precipitation method , 2012, Drug development and industrial pharmacy.

[74]  H. Okada,et al.  Preparation of drug nanoparticle-containing microparticles using a 4-fluid nozzle spray drier for oral, pulmonary, and injection dosage forms. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[75]  C. Berkland,et al.  Nanoparticle formulations in pulmonary drug delivery , 2009, Medicinal research reviews.

[76]  G. P. Martin,et al.  Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. , 2007, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[77]  O. Corrigan Thermal analysis of spray dried products , 1995 .

[78]  R. Müller,et al.  Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. , 2001, Advanced drug delivery reviews.

[79]  P. Chattopadhyay,et al.  Production of griseofulvin nanoparticles using supercritical CO(2) antisolvent with enhanced mass transfer. , 2001, International journal of pharmaceutics.

[80]  Jonghwi Lee,et al.  Role of polymeric stabilizers for drug nanocrystal dispersions , 2005 .

[81]  Jianfeng Chen,et al.  Facile Preparation of Danazol Nanoparticles by High-Gravity Anti-solvent Precipitation (HGAP) Method , 2009 .

[82]  Panos Macheras,et al.  A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. , 2006, International journal of pharmaceutics.

[83]  J. M. Shaw,et al.  Formulation and Antitumor Activity Evaluation of Nanocrystalline Suspensions of Poorly Soluble Anticancer Drugs , 1996, Pharmaceutical Research.

[84]  Wei Yang,et al.  Inhaled nanoparticles--a current review. , 2008, International journal of pharmaceutics.

[85]  P. Chattopadhyay,et al.  Production of Antibiotic Nanoparticles Using Supercritical CO2 as Antisolvent with Enhanced Mass Transfer , 2001 .

[86]  E. Munson,et al.  Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. , 2009, Journal of pharmaceutical sciences.

[87]  K. Cal,et al.  Spray drying technique: II. Current applications in pharmaceutical technology. , 2010, Journal of pharmaceutical sciences.

[88]  H W Frijlink,et al.  A novel bottom-up process to produce drug nanocrystals: controlled crystallization during freeze-drying. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[89]  Kazutaka Higaki,et al.  In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[90]  P Augustijns,et al.  Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. , 2007, International journal of pharmaceutics.

[91]  Robert K. Schultz,et al.  Process-Induced Crystallinity Changes in Albuterol Sulfate and Its Effect on Powder Physical Stability , 1995, Pharmaceutical Research.

[92]  M. Odomi,et al.  Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[93]  K. Johnston,et al.  Single dose and multiple dose studies of itraconazole nanoparticles. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[94]  E. Merisko-Liversidge,et al.  Insulin Nanoparticles: A Novel Formulation Approach for Poorly Water Soluble Zn-Insulin , 2004, Pharmaceutical Research.

[95]  J E Kipp,et al.  The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. , 2004, International journal of pharmaceutics.

[96]  Biana Godin,et al.  Biocompatibility assessment of Si-based nano- and micro-particles. , 2012, Advanced drug delivery reviews.

[97]  Gloria Kwei,et al.  The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. , 2004, International journal of pharmaceutics.

[98]  Y. Wang,et al.  Fabrication of drug nanoparticles by evaporative precipitation of nanosuspension. , 2010, International journal of pharmaceutics.

[99]  David A Groneberg,et al.  Nanomedicine for respiratory diseases. , 2006, European journal of pharmacology.

[100]  Karl-Ernst Wirth,et al.  Electrostatically supported surface coating of solid particles in liquid nitrogen for use in Dry-Powder-Inhalers , 2003 .

[101]  D A Weitz,et al.  Trojan particles: Large porous carriers of nanoparticles for drug delivery , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Patrick Augustijns,et al.  Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. , 2008, International journal of pharmaceutics.

[103]  K. Amighi,et al.  Preparation and characterization of spray-dried tobramycin powders containing nanoparticles for pulmonary delivery. , 2009, International journal of pharmaceutics.

[104]  York,et al.  Strategies for particle design using supercritical fluid technologies. , 1999, Pharmaceutical science & technology today.

[105]  D. Traini,et al.  The nanoscale in pulmonary delivery. Part 1: deposition, fate, toxicology and effects , 2007, Expert opinion on drug delivery.

[106]  Jun Lin,et al.  Functionalized mesoporous silica materials for controlled drug delivery. , 2012, Chemical Society reviews.

[107]  W. Finlay,et al.  Inertial sizing of aerosol inhaled from two dry powder inhalers with realistic breath patterns versus constant flow rates. , 2000, International journal of pharmaceutics.

[108]  B. Pulliam,et al.  Nanoparticles for drug delivery to the lungs. , 2007, Trends in biotechnology.

[109]  Pardeep Gupta,et al.  Effect of arginine hydrochloride and hydroxypropyl cellulose as stabilizers on the physical stability of high drug loading nanosuspensions of a poorly soluble compound. , 2008, International journal of pharmaceutics.

[110]  Wenting Dai,et al.  Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions. , 2008, International journal of pharmaceutics.

[111]  Anjali Sharma,et al.  Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. , 2004, The Journal of antimicrobial chemotherapy.

[112]  M. Mazzotti,et al.  High pressure homogenization of pharmaceutical solids , 2012 .

[113]  Elaine Merisko-Liversidge,et al.  Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. , 2011, Advanced drug delivery reviews.

[114]  Barrett E. Rabinow,et al.  Nanosuspensions in drug delivery , 2004, Nature Reviews Drug Discovery.

[115]  Jukka Rantanen,et al.  Quality by design approach in the optimization of the spray-drying process , 2012, Pharmaceutical development and technology.

[116]  Jinming Gao,et al.  Nanonization strategies for poorly water-soluble drugs. , 2011, Drug discovery today.

[117]  Jennifer B Dressman,et al.  Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[118]  F. Donsì,et al.  Preparation of curcumin sub-micrometer dispersions by high-pressure homogenization. , 2010, Journal of agricultural and food chemistry.

[119]  Terry A. Ring,et al.  Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology , 1991 .

[120]  Jean-Pierre Benoit,et al.  Preparation of Poly(D,L-Lactide/Glycolide) Nanoparticles of Controlled Particle Size Distribution: Application of Experimental Designs , 1992 .

[121]  M. Hussain,et al.  Bioavailability enhancement of a COX-2 inhibitor, BMS-347070, from a nanocrystalline dispersion prepared by spray-drying. , 2005, Journal of pharmaceutical sciences.

[122]  M. Bebawy,et al.  Liposomal Nanoparticles Control the Uptake of Ciprofloxacin Across Respiratory Epithelia , 2012, Pharmaceutical Research.

[123]  H. Schuchmann,et al.  Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. , 2008, Ultrasonics sonochemistry.

[124]  N. Rasenack,et al.  Dissolution Rate Enhancement by in Situ Micronization of Poorly Water-Soluble Drugs , 2002, Pharmaceutical Research.

[125]  Jianfeng Chen,et al.  Engineering of drug nanoparticles by HGCP for pharmaceutical applications , 2008 .

[126]  Jianjun Zhang,et al.  Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[127]  D. Mcclements,et al.  Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components , 2008 .

[128]  Rajesh N. Dave,et al.  Sub-100nm drug particle suspensions prepared via wet milling with low bead contamination through novel process intensification , 2015 .

[129]  Jianfeng Chen,et al.  Preparation and Characterization of Amorphous Cefuroxime Axetil Drug Nanoparticles with Novel Technology: High-Gravity Antisolvent Precipitation , 2006 .

[130]  Erich Brunner,et al.  Reaktionsgeschwindigkeit in heterogenen Systemen , 1904 .

[131]  L. Galet,et al.  Engineering of nano-crystalline drug suspensions: employing a physico-chemistry based stabilizer selection methodology or approach. , 2014, International journal of pharmaceutics.

[132]  D. Lamprou,et al.  Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs. , 2010, Journal of biomedical nanotechnology.

[133]  L. Froyen,et al.  Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[134]  L. Froyen,et al.  Microcrystalline cellulose, a useful alternative for sucrose as a matrix former during freeze-drying of drug nanosuspensions - a case study with itraconazole. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[135]  R. Müller,et al.  Production and Characterization of a Budesonide Nanosuspension for Pulmonary Administration , 2002, Pharmaceutical Research.

[136]  J. Rieger,et al.  Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use. , 2001, Angewandte Chemie.

[137]  Rainer H. Müller,et al.  Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. , 2013, International journal of pharmaceutics.

[138]  Hirofumi Takeuchi,et al.  Particle design of poorly water-soluble drug substances using supercritical fluid technologies. , 2008, Advanced drug delivery reviews.

[139]  I. Ghosh,et al.  Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[140]  Siling Wang,et al.  Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies. , 2013, Colloids and surfaces. B, Biointerfaces.

[141]  Ram B. Gupta,et al.  Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. , 2006, International journal of pharmaceutics.

[142]  R. Müller,et al.  New method for the effective production of ultrafine drug nanocrystals. , 2006, Journal of nanoscience and nanotechnology.

[143]  R. Bodmeier,et al.  Incorporation of polymeric nanoparticles into solid dosage forms. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[144]  R. Müller,et al.  Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. , 2000, International journal of pharmaceutics.

[145]  R. Davé,et al.  Redispersible fast dissolving nanocomposite microparticles of poorly water-soluble drugs. , 2014, International journal of pharmaceutics.

[146]  Timo Laaksonen,et al.  Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles , 2010, Expert opinion on drug delivery.

[147]  F. Espitalier,et al.  Liquid anti-solvent recrystallization to enhance dissolution of CRS 74, a new antiretroviral drug , 2015, Drug development and industrial pharmacy.

[148]  Lai Yeng Lee,et al.  Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[149]  N. Chew,et al.  Novel alternative methods for the delivery of drugs for the treatment of asthma. , 2003, Advanced drug delivery reviews.

[150]  D. Katti,et al.  Electrospraying: a facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[151]  Shohei Sugimoto,et al.  Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[152]  E. Kauppinen,et al.  Aerosol flow reactor method for synthesis of drug nanoparticles. , 2003, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[153]  S. Jafari,et al.  Optimization of nano-emulsions production by microfluidization , 2007 .

[154]  A. Noyes,et al.  The rate of solution of solid substances in their own solutions , 1897 .

[155]  Rainer H Müller,et al.  State of the art of nanocrystals--special features, production, nanotoxicology aspects and intracellular delivery. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[156]  Hak-Kim Chan,et al.  Feasibility of preparing nanodrugs by high-gravity reactive precipitation. , 2004, International journal of pharmaceutics.

[157]  W. Friess,et al.  Evaluation of the Nano Spray Dryer B-90 for pharmaceutical applications. , 2011, Pharmaceutical development and technology.

[158]  V. Mykhaylova DEVELOPMENT OF MICROPARTICLE - NANOPARTICLE POWDER MIXTURES FOR THE USE IN DRY POWDER INHALERS , 2009 .

[159]  Michael Juhnke,et al.  Accelerated Formulation Development for Nanomilled Active Pharmaceutical Ingredients Using a Screening Approach , 2010 .

[160]  M. Descamps,et al.  Direct crystal to glass transformation of trehalose induced by ball milling , 2001 .

[161]  F. Cui,et al.  Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[162]  Carmen Popescu,et al.  Conversion of Nanosuspensions into Dry Powders by Spray Drying: A Case Study , 2008, Pharmaceutical Research.

[163]  G. Van den Mooter,et al.  Bead layering as a process to stabilize nanosuspensions: influence of drug hydrophobicity on nanocrystal reagglomeration following in‐vitro release from sugar beads , 2011, The Journal of pharmacy and pharmacology.

[164]  D. Horn,et al.  Preparation and Characterization of Nano-Sized Carotenoid Hydrosols , 1996 .

[165]  Ulf Olsson,et al.  Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[166]  E. Reverchon,et al.  Tailoring of nano- and micro-particles of some superconductor precursors by supercritical antisolvent precipitation , 2002 .

[167]  Rainer H Müller,et al.  Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[168]  J. Kreuter Nanoparticles--a historical perspective. , 2007, International journal of pharmaceutics.

[169]  Georg Achleitner,et al.  Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[170]  C. Nyström,et al.  Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions , 1988 .

[171]  Malay K. Das,et al.  Preparation and in vitro/in vivo evaluation of felodipine nanosuspension , 2013, European Journal of Drug Metabolism and Pharmacokinetics.

[172]  Xun Wang,et al.  Monodisperse nanocrystals: general synthesis, assembly, and their applications. , 2007, Chemical communications.

[173]  Jianfeng Chen,et al.  Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants. , 2006, International journal of pharmaceutics.

[174]  Niklas Sandler,et al.  Improvement of dissolution rate of indomethacin by inkjet printing. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[175]  E. Kauppinen,et al.  Preparation of polymeric nanoparticles containing corticosteroid by a novel aerosol flow reactor method. , 2003, International journal of pharmaceutics.

[176]  Yu Zhang,et al.  Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. , 2004, International journal of pharmaceutics.

[177]  Fen Guo,et al.  Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation , 2000 .

[178]  R. Tan,et al.  Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. , 2011, International journal of pharmaceutics.

[179]  D. Traini,et al.  The nanoscale in pulmonary delivery. Part 2: formulation platforms , 2007, Expert opinion on drug delivery.

[180]  T. A. Hatton,et al.  Poly(ethylene oxide)-poly(propylene oxide )-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling , 1995 .

[181]  Yan Wang,et al.  Development of a chemically stable 10-hydroxycamptothecin nanosuspensions. , 2009, International journal of pharmaceutics.

[182]  Peter York,et al.  Particle engineering using sonocrystallization: salbutamol sulphate for pulmonary delivery. , 2009, International journal of pharmaceutics.

[183]  Helmut Hahn,et al.  Atovaquone Nanosuspensions Show Excellent Therapeutic Effect in a New Murine Model of Reactivated Toxoplasmosis , 2001, Antimicrobial Agents and Chemotherapy.

[184]  Joseph Wong,et al.  Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetics in the rat. , 2007, International journal of pharmaceutics.

[185]  F. Kesisoglou,et al.  Crystalline Nanosuspensions as Potential Toxicology and Clinical Oral Formulations for BCS II/IV Compounds , 2012, The AAPS Journal.

[186]  W. Hinrichs,et al.  Bottom-Up Preparation Techniques for Nanocrystals of Lipophilic Drugs , 2010, Pharmaceutical Research.

[187]  Alejandro Sosnik,et al.  Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. , 2015, Advances in colloid and interface science.

[188]  J. Kansikas,et al.  Polymeric Drug Nanoparticles Prepared by an Aerosol Flow Reactor Method , 2004, Pharmaceutical Research.

[189]  P York,et al.  Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. , 2007, Advanced drug delivery reviews.

[190]  Y. Kawashima,et al.  Properties of a peptide containing DL-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods. , 1999, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[191]  E. Munson,et al.  Pure insulin nanoparticle agglomerates for pulmonary delivery. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[192]  T. Tan,et al.  Preparation of Azithromycin Nanosuspensions by High Pressure Homogenization and its Physicochemical Characteristics Studies , 2007, Drug development and industrial pharmacy.

[193]  A. Fahr,et al.  Enhanced dissolution of oxcarbazepine microcrystals using a static mixer process. , 2007, Colloids and surfaces. B, Biointerfaces.

[194]  K. Moribe,et al.  Investigation of Drug Nanoparticle Formation by Co-grinding with Cyclodextrins: Studies for Indomethacin, Furosemide and Naproxen , 2006 .

[195]  A. Lundqvist,et al.  Particle size reduction for improvement of oral absorption of the poorly soluble drug UG558 in rats during early development , 2009, Drug development and industrial pharmacy.

[196]  I. Haririan,et al.  Entrapment of 5‐fluorouracil into PLGA matrices using supercritical antisolvent processes , 2011, The Journal of pharmacy and pharmacology.

[197]  M. Alonso,et al.  Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers , 1997 .

[198]  Jonghwi Lee,et al.  Effective polymeric dispersants for vacuum, convection and freeze drying of drug nanosuspensions. , 2010, International journal of pharmaceutics.

[199]  R. Tan,et al.  Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. , 2007, International journal of pharmaceutics.

[200]  C. Arpagaus,et al.  Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process. , 2012, Colloids and surfaces. B, Biointerfaces.

[201]  A. Fahr,et al.  Nano- and micro-particulate formulations of poorly water-soluble drugs by using a novel optimized technique. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[202]  K. Cal,et al.  Spray drying technique. I: Hardware and process parameters. , 2010, Journal of pharmaceutical sciences.

[203]  R. W. Wood,et al.  Nebulization of NanoCrystals™: Production of a Respirable Solid-in-Liquid-in-Air Colloidal Dispersion , 2004, Pharmaceutical Research.

[204]  Vandana B. Patravale,et al.  Current strategies for engineering drug nanoparticles , 2004 .

[205]  Po-Chang Chiang,et al.  Pharmacokinetic evaluation of a 1,3-dicyclohexylurea nanosuspension formulation to support early efficacy assessment , 2007, Nanoscale Research Letters.

[206]  Huibi Xu,et al.  Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. , 2007, International journal of pharmaceutics.

[207]  Ranjita Shegokar,et al.  Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. , 2010, International journal of pharmaceutics.

[208]  P. Constantinides,et al.  Advances in lipid nanodispersions for parenteral drug delivery and targeting. , 2008, Advanced drug delivery reviews.

[209]  T. Imai,et al.  Effect of grinding with hydroxypropyl cellulose on the dissolution and particle size of a poorly water-soluble drug. , 1999, Chemical & pharmaceutical bulletin.

[210]  Jong-sang Park,et al.  Investigation of the factors influencing the release rates of cyclosporin A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[211]  S. Feng,et al.  Poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. , 2007, International journal of pharmaceutics.

[212]  R. Tan,et al.  Novel Formulation of Large Hollow Nanoparticles Aggregates as Potential Carriers in Inhaled Delivery of Nanoparticulate Drugs , 2006 .

[213]  R. Müller,et al.  Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[214]  Jean-Michel Kauffmann,et al.  The effects of excipients on transporter mediated absorption. , 2010, International journal of pharmaceutics.

[215]  W. Nernst,et al.  Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen , 1904 .

[216]  G. W. Pace,et al.  Novel injectable formulations of insoluble drugs , 1999 .

[217]  Kikuo Okuyama,et al.  Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges , 2011 .

[218]  W. Finlay,et al.  Fine particle fraction as a measure of mass depositing in the lung during inhalation of nearly isotonic nebulized aerosols , 1997 .

[219]  Siling Wang,et al.  Investigation of nanosized crystalline form to improve the oral bioavailability of poorly water soluble cilostazol. , 2011, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[220]  Philip Chi Lip Kwok,et al.  Production methods for nanodrug particles using the bottom-up approach. , 2011, Advanced drug delivery reviews.

[221]  N. Esfandiari Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide , 2015 .

[222]  S. Baumgartner,et al.  Advantages of celecoxib nanosuspension formulation and transformation into tablets. , 2009, International journal of pharmaceutics.

[223]  Chun Gwon Park,et al.  A nanofibrous sheet-based system for linear delivery of nifedipine. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[224]  C Olbrich,et al.  Formulation of amphotericin B as nanosuspension for oral administration. , 2003, International journal of pharmaceutics.

[225]  G. Ji,et al.  Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation. , 2014, International journal of pharmaceutics.

[226]  C. Berkland,et al.  Combination Chemotherapeutic Dry Powder Aerosols via Controlled Nanoparticle Agglomeration , 2009, Pharmaceutical Research.

[227]  R. Davé,et al.  Recovery of BCS Class II drugs during aqueous redispersion of core–shell type nanocomposite particles produced via fluidized bed coating , 2013 .

[228]  L. Dong,et al.  Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. , 2007, International journal of pharmaceutics.

[229]  Raviraj Pillai,et al.  Production and In Vitro Characterization of Solid Dosage form Incorporating Drug Nanoparticles , 2008 .

[230]  K. Byrappa,et al.  Nanoparticles synthesis using supercritical fluid technology - towards biomedical applications. , 2008, Advanced drug delivery reviews.

[231]  H. Bosch,et al.  An in-vitro assessment of a NanoCrystal beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization. , 1999, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[232]  H. Kubo,et al.  Improvement of dissolution rate and oral bioavailability of a sparingly water-soluble drug, (+/-)-5-[[2-(2-naphthalenylmethyl)-5-benzoxazolyl]-methyl]- 2, 4-thiazolidinedione, in co-ground mixture with D-mannitol. , 1997, Biological & pharmaceutical bulletin.

[233]  E. Merisko-Liversidge,et al.  A formulation strategy for gamma secretase inhibitor ELND006, a BCS class II compound: development of a nanosuspension formulation with improved oral bioavailability and reduced food effects in dogs. , 2012, Journal of pharmaceutical sciences.

[234]  L. Brannon-Peppas,et al.  Nanoparticle and targeted systems for cancer therapy. , 2004, Advanced drug delivery reviews.

[235]  R. Tan,et al.  The nano spray dryer B-90 , 2011, Expert opinion on drug delivery.

[236]  Jennifer Jung,et al.  Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles. , 2005, International journal of pharmaceutics.

[237]  Lei Gao,et al.  Drug nanocrystals: In vivo performances. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[238]  K. Johnston,et al.  Nanoparticle Engineering Processes for Enhancing the Dissolution Rates of Poorly Water Soluble Drugs , 2004, Drug development and industrial pharmacy.

[239]  K. Kisich,et al.  The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. , 2005, American journal of respiratory and critical care medicine.

[240]  Robert K. Prud'homme,et al.  Flash NanoPrecipitation of Organic Actives and Block Copolymers using a Confined Impinging Jets Mixer , 2003 .

[241]  Ludo Froyen,et al.  Alternative matrix formers for nanosuspension solidification: Dissolution performance and X-ray microanalysis as an evaluation tool for powder dispersion. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[242]  A. Chow,et al.  Modification of acetaminophen crystals: influence of growth in aqueous solutions containing p-acetoxyacetanilide on crystal properties , 1985 .

[243]  N. Blagden,et al.  Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[244]  E. Munson,et al.  Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. , 2009, International journal of pharmaceutics.

[245]  Christos Reppas,et al.  Dissolution Testing as a Prognostic Tool for Oral Drug Absorption: Immediate Release Dosage Forms , 2004, Pharmaceutical Research.

[246]  K. Higashi,et al.  Unique indomethacin nanoparticles formation by cogrinding with dextrin under defined moisture conditions , 2012 .

[247]  Eric Pridgen,et al.  Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles , 2008, Molecular pharmaceutics.

[248]  Elaine Merisko-Liversidge,et al.  Nanosizing: a formulation approach for poorly-water-soluble compounds. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[249]  Filippos Kesisoglou,et al.  Nanosizing--oral formulation development and biopharmaceutical evaluation. , 2007, Advanced drug delivery reviews.

[250]  Masoud Bahrami,et al.  Production of micro- and nano-composite particles by supercritical carbon dioxide , 2007 .

[251]  Jayanth Panyam,et al.  Biodegradable nanoparticles for drug and gene delivery to cells and tissue. , 2003, Advanced drug delivery reviews.

[252]  R. Müller,et al.  Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. , 2008, International journal of pharmaceutics.

[253]  Joo-Youn Cho,et al.  Novel nanocrystal formulation of megestrol acetate has improved bioavailability compared with the conventional micronized formulation in the fasting state , 2014, Drug design, development and therapy.

[254]  Liang Fang,et al.  Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension. , 2011, International journal of pharmaceutics.

[255]  Pankaj Pathak,et al.  Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing , 2006 .

[256]  Jianfeng Chen,et al.  Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment. , 2005, International journal of pharmaceutics.

[257]  Michael Türk,et al.  Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): Results for Naproxen , 2010 .

[258]  A. D'emanuele,et al.  Solubility enhancement of paclitaxel using a linear-dendritic block copolymer. , 2013, International journal of pharmaceutics.

[259]  Sanjay Garg,et al.  Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. , 2009, International journal of pharmaceutics.

[260]  S. Kazarian,et al.  A novel method for the production of crystalline micronised particles. , 2010, International journal of pharmaceutics.

[261]  R. Pandey,et al.  Oral solid lipid nanoparticle-based antitubercular chemotherapy. , 2005, Tuberculosis.

[262]  T. Asefa,et al.  Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[263]  S. Gattani,et al.  Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. , 2013, Colloids and surfaces. B, Biointerfaces.