FlexGP 2.0 : multiple levels of parallelism in distributed machine learning via genetic programming

This thesis presents FlexGP 2.0, a distributed cloud-backed machine learning system. FlexGP 2.0 features multiple levels of parallelism which provide a significant improvement in accuracy v.s. elapsed time. The amount of computational resources in FlexGP 2.0 can be scaled along several dimensions to support large, complex data. FlexGP 2.0's core genetic programming (GP) learner includes multithreaded C++ model evaluation and a multi-objective optimization algorithm which is extensible to pursue any number of objectives simultaneously in parallel. FlexGP 2.0 parallelizes the entire learner to obtain a large distributed population size and leverages communication between learners to increase performance via transferral of search progress between learners. FlexGP 2.0 factors training data to boost performance and enable support for increased data size and complexity. Several experiments are performed which verify the efficacy of FlexGP 2.0's multilevel parallelism. Experiments run on a large dataset from a real-world regression problem. The results demonstrate both less time to achieve the same accuracy and overall increased accuracy, and illustrate the value of FlexGP 2.0 as a platform for machine learning. Thesis Supervisor: Kalyan Veeramachaneni Title: Research Scientist Thesis Supervisor: Una-May O'Reilly Title: Principal Research Scientist