Model theory of modal logic

[1]  Yuri Gurevich,et al.  Zero-One Laws , 2017, Bull. EATCS.

[2]  Charles S. Peirce,et al.  Studies in Logic , 2008 .

[3]  A. H. Lachlan,et al.  A note on Thomason's refined structures for tense logics , 2008 .

[4]  David Makinson,et al.  A generalisation of the concept of a relational model for modal logic1 , 2008 .

[5]  D. Gabbay Selective filtration in modal logic Part A. Semantic tableaux method , 2008 .

[6]  Ludomir Newelski,et al.  Logic Colloquium 2005 (Lecture Notes in Logic) , 2007 .

[7]  Valentin Goranko,et al.  Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..

[8]  Balder ten Cate,et al.  Expressivity of Second Order Propositional Modal Logic , 2006, J. Philos. Log..

[9]  Johan van Benthem,et al.  Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.

[10]  D. Gabbay,et al.  Interpolation and Definability: Modal and Intuitionistic Logic , 2005 .

[11]  D. Gabbay,et al.  Interpolation and Definability in Modal Logics (Oxford Logic Guides) , 2005 .

[12]  Anuj Dawar,et al.  Modal characterisation theorems over special classes of frames , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[13]  Robert Goldblatt,et al.  Erdös graphs resolve Fine's canonicity problem , 2004, Bull. Symb. Log..

[14]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[15]  Robert Goldblatt,et al.  Mathematical modal logic: A view of its evolution , 2003, J. Appl. Log..

[16]  Maarten Marx,et al.  XPath and Modal Logics of Finite DAG's , 2003, TABLEAUX.

[17]  Ian M. Hodkinson,et al.  Finite conformal hypergraph covers and Gaifman cliques in finite structures , 2003, Bull. Symb. Log..

[18]  Martin Otto,et al.  Modal and guarded characterisation theorems over finite transition systems , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[19]  Jean-Marie Le Bars,et al.  The 0-1 law fails for frame satisfiability of propositional modal logic , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[20]  Ian M. Hodkinson,et al.  Loosely Guarded Fragment of First-Order Logic has the Finite Model Property , 2002, Stud Logica.

[21]  H. Wansing Essays on Non-Classical Logic , 2001 .

[22]  Mark Reynolds,et al.  An axiomatization of full Computation Tree Logic , 2001, Journal of Symbolic Logic.

[23]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[24]  Erich Grädel,et al.  Why are Modal Logics so Robustly Decidable? , 2001, Bull. EATCS.

[25]  Ulrike Sattler,et al.  Modal Logic and the Two-Variable Fragment , 2001, CSL.

[26]  Martin Otto,et al.  Back and forth between guarded and modal logics , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[27]  Marco Hollenberg,et al.  Logical questions concerning the μ-calculus: Interpolation, Lyndon and Łoś-Tarski , 2000, Journal of Symbolic Logic.

[28]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[29]  D. Lascar,et al.  Extending partial automorphisms and the profinite topology on free groups , 1999 .

[30]  Martin Otto,et al.  On Logics with Two Variables , 1999, Theor. Comput. Sci..

[31]  Martin Otto,et al.  Bisimulation-invariant PTIME and higher-dimensional µ-calculus , 1999, Theor. Comput. Sci..

[32]  Alexei Lisitsa,et al.  Linear Ordering on Graphs, Anti-Founded Sets and Polynomial Time Computability , 1999, Theor. Comput. Sci..

[33]  Igor Walukiewicz,et al.  Guarded fixed point logic , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[34]  Faron Moller,et al.  On the expressive power of CTL , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[35]  M. Kracht Tools and Techniques in Modal Logic , 1999 .

[36]  Johan van Benthem,et al.  Modality, Bisimulation and Interpolation in Infinitary Logic , 1999, Ann. Pure Appl. Log..

[37]  M. de Rijke,et al.  Expressiveness of Concept Expressions in First-Order Description Logics , 1999, Artif. Intell..

[38]  Valentin Goranko,et al.  Axiomatizations with Context Rules of Inference in Modal Logic , 1998, Stud Logica.

[39]  Moshe Y. Vardi Reasoning about The Past with Two-Way Automata , 1998, ICALP.

[40]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[41]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[42]  Holger Sturm,et al.  Interpolation and Preservation in MLω1 , 1998, Notre Dame J. Formal Log..

[43]  Eric Rosen,et al.  Modal Logic over Finite Structures , 1997, J. Log. Lang. Inf..

[44]  Marcus Kracht,et al.  Simulation and Transfer Results in Modal Logic – A Survey , 1997, Stud Logica.

[45]  A. Dawar FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .

[46]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[47]  Phokion G. Kolaitis,et al.  On the Decision Problem for Two-Variable First-Order Logic , 1997, Bulletin of Symbolic Logic.

[48]  Erich Grädel,et al.  Undecidability results on two-variable logics , 1997, Arch. Math. Log..

[49]  M. de Rijke,et al.  A Note on Graded Modal Logic , 1996, Stud Logica.

[50]  Frank Wolter,et al.  Advanced modal logic , 1996 .

[51]  Igor Walukiewicz,et al.  On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic , 1996, CONCUR.

[52]  Johan van Benthem,et al.  Exploring logical dynamics , 1996, Studies in logic, language and information.

[53]  Kees Doets,et al.  Basic model theory , 1996, Studies in logic, language and information.

[54]  A. Visser Bisimulations, model descriptions and propositional quantifiers , 1996 .

[55]  M. de Rijke Modal model theory , 1995 .

[56]  M. de Rijke,et al.  A Lindström theorem for modal logic , 1994 .

[57]  M. Hollenberg Hennessy-Milner Classes and Process Algebra , 1994 .

[58]  Yde Venema,et al.  Derivation rules as anti-axioms in modal logic , 1993, Journal of Symbolic Logic.

[59]  Bruce M. Kapron,et al.  Zero-one laws for modal logic , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[60]  Valentin Goranko,et al.  Using the Universal Modality: Gains and Questions , 1992, J. Log. Comput..

[61]  Lilia Chagrova,et al.  An undecidable problem in correspondence theory , 1991, Journal of Symbolic Logic.

[62]  George Edward Hughes,et al.  Every world can see a reflexive world , 1990, Stud Logica.

[63]  Robert Goldblatt,et al.  Varieties of Complex Algebras , 1989, Ann. Pure Appl. Log..

[64]  Giovanni Sambin,et al.  A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.

[65]  E. Allen Emerson,et al.  An Automata Theoretic Decision Procedure for the Propositional Mu-Calculus , 1989, Inf. Comput..

[66]  Johan van Benthem,et al.  Notes on Modal Definability , 1988, Notre Dame J. Formal Log..

[67]  Giovanni Sambin,et al.  Topology and duality in modal logic , 1988, Ann. Pure Appl. Log..

[68]  Slavian Radev,et al.  Infinitary propositional normal modal logic , 1987, Stud Logica.

[69]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[70]  Wolfgang Thomas,et al.  Computation Tree Logic CTL* and Path Quantifiers in the Monadic Theory of the Binary Tree , 1987, ICALP.

[71]  George Boolos,et al.  An incomplete system of modal logic , 1985, J. Philos. Log..

[72]  Catriel Beeri,et al.  On the Desirability of Acyclic Database Schemes , 1983, JACM.

[73]  Etienne Grandjean,et al.  Complexity of the First-Order Theory of Almost All Finite Structures , 1983, Inf. Control..

[74]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[75]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[76]  Johan van Benthem,et al.  Canonical Modal Logics and Ultrafilter Extensions , 1979, J. Symb. Log..

[77]  R. Labrecque The Correspondence Theory , 1978 .

[78]  Ronald Fagin,et al.  Probabilities on finite models , 1976, Journal of Symbolic Logic.

[79]  Robert Goldblatt,et al.  First-order definability in modal logic , 1975, Journal of Symbolic Logic.

[80]  D. Lewis Intensional logics without interative axioms , 1974, J. Philos. Log..

[81]  R. Goldblatt Metamathematics of modal logic , 1974, Bulletin of the Australian Mathematical Society.

[82]  S. K. Thomason,et al.  An incompleteness theorem in modal logic , 1974 .

[83]  John L. Pollock,et al.  Basic modal logic , 1967, Journal of Symbolic Logic.

[84]  Erwin Engeler,et al.  Languages with expressions of infinite length , 1966 .

[85]  H. Gaifman Concerning measures in first order calculi , 1964 .

[86]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[87]  H. Jeffreys Logical Foundations of Probability , 1952, Nature.

[88]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[89]  Chabane Djeraba,et al.  Graphs and Hypergraphs , 2008 .

[90]  Martin Otto,et al.  Bisimulation invariance and finite models , 2006 .

[91]  Wolfram Burgard,et al.  ALBERT-LUDWIGS-UNIVERSIT ¨ AT FREIBURG , 2006 .

[92]  B. T. Cate,et al.  Model theory for extended modal languages , 2005 .

[93]  Dov M. Gabbay,et al.  Interpolation and definability , 2005 .

[94]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[95]  Valentin Goranko,et al.  Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Model?theoretic Aspects , 2004, Advances in Modal Logic.

[96]  Valentin Goranko,et al.  Mathematical Logic , 2003 .

[97]  Marek W. Zawadowski,et al.  Sheaves, games, and model completions , 2002 .

[98]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[99]  E. Hoogland Definability and Interpolation: Model-theoretic investigations , 2001 .

[100]  A. Arnold,et al.  Rudiments of μ-calculus , 2001 .

[101]  M. de Rijke,et al.  Global definability in basic modal logic , 2001 .

[102]  Angus Macintyre,et al.  Trends in Logic , 2001 .

[103]  J. Benthem,et al.  Higher-Order Logic , 2001 .

[104]  Simulating Polyadic Modal Logics by Monadic Ones , 2001 .

[105]  F. Wolter,et al.  Handbook of philosophical logic. Vol. 3 , 2001 .

[106]  Q. Puite,et al.  Mathematical logic , 2000 .

[107]  A. Szałas,et al.  A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .

[108]  Y. Venema Model definability, purely modal , 1999 .

[109]  M. de Rijke,et al.  JFAK. Essays Dedicated to Johan van Benthem on the occasion of his 50th Birthday , 1999 .

[110]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[111]  Yuri Gurevich,et al.  THE LOGIC IN COMPUTER SCIENCE COLUMN , 1999 .

[112]  Giovanna DAgostino Modal Logic and non-well-founded Set Theory: translation, bisimulation, interpolation , 1998 .

[113]  Ralph-Johan Back,et al.  Higher-Order Logic , 1998 .

[114]  maarten marx Complexity of Modal Logics of RelationsMaarten MarxDepartment of Computing , 1997 .

[115]  Moshe Y. Vardi Why is Modal Logic So Robustly Decidable? , 1996, Descriptive Complexity and Finite Models.

[116]  M. de Rijke,et al.  Modal Logic and Process Algebra: A Bisimulation Perspective , 1996 .

[117]  J. Flum On the (infinite) model theory of fixed-point logics , 1995 .

[118]  M. de Rijke,et al.  Modal Logic and Process Algebra , 1995 .

[119]  J. Flum,et al.  Finite Automata and Logic: A Microcosm of Finite Model Theory , 1995 .

[120]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[121]  John Etchemendy. Hyperproof,et al.  Center for the Study of Language and Information , 1994 .

[122]  R. Goldblatt Mathematics of modality , 1993 .

[123]  M. de Rijke Extending modal logic , 1993 .

[124]  L. Maksimova Definability and interpolation in classical modal logics , 1992 .

[125]  Y. Gurevich On Finite Model Theory , 1990 .

[126]  R. Goldblatt Logics of Time and Computation , 1987 .

[127]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[128]  Krister Segerberg,et al.  An Introduction to Modal Logic , 1977 .

[129]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[130]  Dov M. Gabbay,et al.  Investigations in modal and tense logics with applications to problems in philosophy and linguistics , 1976 .

[131]  Steven K. Thomason,et al.  Reduction of second-order logic to modal logic , 1975, Math. Log. Q..

[132]  S. K. Thomason,et al.  AXIOMATIC CLASSES IN PROPOSITIONAL MODAL LOGIC , 1975 .

[133]  Michael Mortimer,et al.  On languages with two variables , 1975, Math. Log. Q..

[134]  K. Fine Some Connections Between Elementary and Modal Logic , 1975 .

[135]  S. Kanger Proceedings of the third Scandinavian Logic Symposium , 1975 .

[136]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[137]  Krister Segerberg,et al.  An essay in classical modal logic , 1971 .

[138]  H. Keisler Model theory for infinitary logic , 1971 .

[139]  Yu. V. Glebskii,et al.  Range and degree of realizability of formulas in the restricted predicate calculus , 1969 .

[140]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[141]  E. López-Escobar On defining well-orderings , 1966 .

[142]  E. López-Escobar An addition to "On defining well-orderings" , 1966 .

[143]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[144]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .