Resolution of the identity atomic orbital Laplace transformed second order Møller-Plesset theory for nonconducting periodic systems.

An improvement in performance of the atomic orbital Laplace transformed second-order Møller-Plesset (AO-LT-MP2) method for periodic systems is reported using the resolution of identity (RI) technique. Transformation of the two-electron integrals constitutes the main computational bottleneck of the AO-LT-MP2 method. A substitution of regular four-center integrals by their three center counterparts in the RI approximation naturally reduces the computational cost of the integral transformation step. The RI divergence problem in the presence of periodic boundary conditions is solved in our implementation by restricting the fitting domain. Accuracy and computational efficiency of the RI-AO-LT-MP2 approach are assessed on a set of one-dimensional test systems: trans-polyacetylene and anti-transoid polymethineimine.

[1]  K. Kudin,et al.  Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions , 2000 .

[2]  Philippe Y. Ayala,et al.  Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems , 2001 .

[3]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[4]  Frederick R. Manby,et al.  Fast local-MP2 method with density-fitting for crystals. I. Theory and algorithms , 2007 .

[5]  Gustavo E. Scuseria,et al.  A fast multipole algorithm for the efficient treatment of the Coulomb problem in electronic structure calculations of periodic systems with Gaussian orbitals , 1998 .

[6]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[7]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[8]  M. Dolg,et al.  An incremental approach for correlation contributions to the structural and cohesive properties of polymers. Coupled-cluster study of trans-polyacetylene , 1997 .

[9]  Martin Head-Gordon,et al.  Scaled opposite-spin second order Møller-Plesset correlation energy: an economical electronic structure method. , 2004, The Journal of chemical physics.

[10]  Jan Almlöf,et al.  Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .

[11]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[12]  Frederick R. Manby,et al.  Fast local-MP2 method with density-fitting for crystals. II. Test calculations and application to the carbon dioxide crystal , 2007 .

[13]  Gustavo E. Scuseria,et al.  A quantitative study of the scaling properties of the Hartree–Fock method , 1995 .

[14]  S. Suhai Bond alternation in infinite polyene: Peierls distortion reduced by electron correlation , 1983 .

[15]  S. Suhai,et al.  Quasiparticle energy-band structures in semiconducting polymers: Correlation effects on the band gap in polyacetylene , 1983 .

[16]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[17]  Hans Peter Lüthi,et al.  Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model , 2001 .

[18]  Martin Head-Gordon,et al.  Auxiliary basis expansions for large-scale electronic structure calculations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R Dovesi,et al.  Local-MP2 electron correlation method for nonconducting crystals. , 2005, The Journal of chemical physics.

[20]  S. Hirata,et al.  Density functional crystal orbital study on the normal vibrations of polyacetylene and polymethineimine , 1997 .

[21]  Christian Ochsenfeld,et al.  Rigorous integral screening for electron correlation methods. , 2005, The Journal of chemical physics.

[22]  Peter Pulay,et al.  A low-scaling method for second order Møller–Plesset calculations , 2001 .

[23]  Christian Ochsenfeld,et al.  Multipole-based integral estimates for the rigorous description of distance dependence in two-electron integrals. , 2005, The Journal of chemical physics.

[24]  Marco Häser,et al.  Møller-Plesset (MP2) perturbation theory for large molecules , 1993 .

[25]  M. Dolg,et al.  Correlated ground-state ab initio calculations of polymethineimine , 2000 .

[26]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[27]  Michael J Frisch,et al.  Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. , 2006, The Journal of chemical physics.

[28]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[29]  Rodney J. Bartlett,et al.  Second‐order many‐body perturbation‐theory calculations in extended systems , 1996 .

[30]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[31]  R. Bartlett,et al.  Correlated vibrational frequencies of polymers: MBPT(2) for all-trans polymethineimine , 1998 .

[32]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[33]  Gustavo E Scuseria,et al.  Importance of chain-chain interactions on the band gap of trans-polyacetylene as predicted by second-order perturbation theory. , 2004, The Journal of chemical physics.

[34]  Frederick R. Manby,et al.  The Poisson equation in density fitting for the Kohn-Sham Coulomb problem , 2001 .

[35]  Donald G. Truhlar,et al.  How Well Can Hybrid Density Functional Methods Predict Transition State Geometries and Barrier Heights , 2001 .