A Common Variant in MIR182 Is Associated With Primary Open-Angle Glaucoma in the NEIGHBORHOOD Consortium

Yutao Liu, Jessica Cooke Bailey, Inas Helwa, W. Michael Dismuke, Jingwen Cai, Michelle Drewry, Murray H. Brilliant, Donald L. Budenz, William G. Christen, Daniel I. Chasman, John H. Fingert, Douglas Gaasterland, Terry Gaasterland, Mae O. Gordon, Robert P. Igo Jr, Jae H. Kang, Michael A. Kass, Peter Kraft, Richard K. Lee, Paul Lichter, Sayoko E. Moroi, Anthony Realini, Julia E. Richards, Robert Ritch, Joel S. Schuman, William K. Scott, Kuldev Singh, Arthur J. Sit, Yeunjoo E. Song, Douglas Vollrath, Robert Weinreb, Felipe Medeiros, Gadi Wollstein, Donald J. Zack, Kang Zhang, Margaret A. Pericak-Vance, Pedro Gonzalez, W. Daniel Stamer, John Kuchtey, Rachel W. Kuchtey, R. Rand Allingham, Michael A. Hauser, Louis R. Pasquale, Jonathan L. Haines, and Janey L. Wiggs

[1]  Robert N Weinreb,et al.  Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open angle glaucoma , 2015, Nature Genetics.

[2]  A. Eichmann,et al.  miR-182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart , 2013, Scientific Reports.

[3]  K. Chalam,et al.  An Updated Review on the Genetics of Primary Open Angle Glaucoma , 2015, International journal of molecular sciences.

[4]  A. Seth,et al.  MiR-182 Is Associated with Growth, Migration and Invasion in Prostate Cancer via Suppression of FOXO1 , 2015, Journal of Cancer.

[5]  P. Angel,et al.  Junb controls lymphatic vascular development in zebrafish via miR-182 , 2015, Scientific Reports.

[6]  M. Hauser,et al.  Expression Profiling of Human Schlemm's Canal Endothelial Cells From Eyes With and Without Glaucoma. , 2015, Investigative ophthalmology & visual science.

[7]  Khaled K. Abu-Amero,et al.  Screening of the Seed Region of MIR184 in Keratoconus Patients from Saudi Arabia , 2015, BioMed research international.

[8]  W. Stamer,et al.  Human aqueous humor exosomes. , 2015, Experimental eye research.

[9]  Michael B. Stadler,et al.  miRNAs 182 and 183 Are Necessary to Maintain Adult Cone Photoreceptor Outer Segments and Visual Function , 2014, Neuron.

[10]  M. Vetter,et al.  MicroRNA Maintenance of Cone Outer Segments , 2014, Neuron.

[11]  A. Kijlstra,et al.  Predisposition to Behçet’s disease and VKH syndrome by genetic variants of miR-182 , 2014, Journal of Molecular Medicine.

[12]  A. Clark,et al.  The role of TGF-β2 and bone morphogenetic proteins in the trabecular meshwork and glaucoma. , 2014, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[13]  C. Luna,et al.  Role of microRNAs in the trabecular meshwork. , 2014, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[14]  A. Kijlstra,et al.  MicroRNA-146a and Ets-1 Gene Polymorphisms Are Associated with Pediatric Uveitis , 2014, PloS one.

[15]  J. Haines,et al.  Advances in the genomics of common eye diseases. , 2013, Human molecular genetics.

[16]  M. Hauser,et al.  Gene expression profile in human trabecular meshwork from patients with primary open-angle glaucoma. , 2013, Investigative ophthalmology & visual science.

[17]  Paul Marjoram,et al.  A genome-wide association study of central corneal thickness in Latinos. , 2013, Investigative ophthalmology & visual science.

[18]  Yan Wang,et al.  Expression and regulatory function of miRNA-182 in triple-negative breast cancer cells through its targeting of profilin 1 , 2013, Tumor Biology.

[19]  S. Lakhani,et al.  MicroRNA-182-5p targets a network of genes involved in DNA repair. , 2013, RNA.

[20]  Tin Aung,et al.  Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus , 2013, Nature Genetics.

[21]  R. Dahiya,et al.  MicroRNA-182-5p Promotes Cell Invasion and Proliferation by Down Regulating FOXF2, RECK and MTSS1 Genes in Human Prostate Cancer , 2013, PloS one.

[22]  Peter E. Larsen,et al.  Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration , 2013, Proceedings of the National Academy of Sciences.

[23]  D. Epstein,et al.  Regulation of Trabecular Meshwork Cell Contraction and Intraocular Pressure by miR-200c , 2012, PloS one.

[24]  Libing Song,et al.  TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. , 2012, The Journal of clinical investigation.

[25]  Z. Yamagata,et al.  Association between genetic variants associated with vertical cup-to-disc ratio and phenotypic features of primary open-angle glaucoma. , 2012, Ophthalmology.

[26]  C. Willoughby,et al.  Mutation altering the miR-184 seed region causes familial keratoconus with cataract. , 2011, American journal of human genetics.

[27]  R. R. Allingham,et al.  Molecular genetics in glaucoma. , 2011, Experimental eye research.

[28]  K. Palczewski,et al.  Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of the Retina* , 2011, The Journal of Biological Chemistry.

[29]  D. Epstein,et al.  MicroRNA‐24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN , 2011, Journal of cellular physiology.

[30]  D. Oh,et al.  Coordinated regulation of extracellular matrix synthesis by the microRNA-29 family in the trabecular meshwork. , 2011, Investigative ophthalmology & visual science.

[31]  K. Rezaei,et al.  Multiplex cytokine analysis reveals elevated concentration of interleukin-8 in glaucomatous aqueous humor. , 2010, Investigative ophthalmology & visual science.

[32]  M. Gratacós,et al.  Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. , 2010, Human molecular genetics.

[33]  A. Hofman,et al.  A Genome-Wide Association Study of Optic Disc Parameters , 2010, PLoS genetics.

[34]  Paul Mitchell,et al.  Common Genetic Variants near the Brittle Cornea Syndrome Locus ZNF469 Influence the Blinding Disease Risk Factor Central Corneal Thickness , 2010, PLoS genetics.

[35]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[36]  D. Epstein,et al.  Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress , 2009, Molecular vision.

[37]  D. Epstein,et al.  Targeting of Integrin β1 and Kinesin 2α by MicroRNA 183* , 2009, The Journal of Biological Chemistry.

[38]  Sandro Banfi,et al.  microRNAs and genetic diseases , 2009, PathoGenetics.

[39]  Guorong Li,et al.  Alterations in microRNA expression in stress-induced cellular senescence , 2009, Mechanisms of Ageing and Development.

[40]  Tamas Dalmay,et al.  Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss , 2009, Nature Genetics.

[41]  Yutao Liu,et al.  The genetics of primary open-angle glaucoma: a review. , 2009, Experimental eye research.

[42]  Anton J. Enright,et al.  An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice , 2009, Nature Genetics.

[43]  Fumitaka Osakada,et al.  Targeted deletion of miR-182, an abundant retinal microRNA , 2009, Molecular vision.

[44]  D. Polsky,et al.  Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor , 2009, Proceedings of the National Academy of Sciences.

[45]  T. Hudson,et al.  FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A. , 2007, Human molecular genetics.

[46]  J. Sowden,et al.  Molecular and developmental mechanisms of anterior segment dysgenesis , 2007, Eye.

[47]  D. Valle,et al.  MicroRNA (miRNA) Transcriptome of Mouse Retina and Identification of a Sensory Organ-specific miRNA Cluster* , 2007, Journal of Biological Chemistry.

[48]  Peng Jin,et al.  Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. , 2007, Human molecular genetics.

[49]  Richard S. Smith,et al.  Anterior segment development relevant to glaucoma. , 2004, The International journal of developmental biology.

[50]  D Y Nishimura,et al.  A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. , 2001, American journal of human genetics.

[51]  J. Regan,et al.  Cultured human trabecular meshwork cells express aquaporin-1 water channels. , 1995, Current eye research.

[52]  M. Bruce Shields,et al.  Textbook of glaucoma , 1987 .