A Miniaturized 70-GHz Broadband Amplifier in 0.13- m CMOS Technology

A 70-GHz broadband amplifier is realized in a 0.13- m CMOS technology. By using five cascaded common- source stages with the proposed asymmetric transformer peaking technique, the measured bandwidth and gain can reach 70.6 GHz and 10.3 dB under a power consumption of 79.5 mW. Within the circuit bandwidth, the maximum input and output reflection coefficients are 6.1 and 10.8 dB, respectively. The group delay variation is 12.0 ps, and the output 1-dB compres- sion point is 0.2 dBm at 5 GHz. With the miniaturized transformer design, the occupied core area of the circuit is only 0.05 mm . This amplifier demonstrates again-bandwidthproduct of 231 GHz and a up to 2.9 GHz/mW. Index Terms—Broadband amplifier, CMOS, common-source (CS) stage, gain-bandwidth product (GBW), transformer peaking.

[1]  Jun-De Jin,et al.  A 40-Gb/s Transimpedance Amplifier in 0.18-$\mu$m CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[2]  A. Leven,et al.  SiGe differential transimpedance amplifier with 50 GHz bandwidth , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[3]  Liang-Hung Lu,et al.  A 45.6-GHz matrix distributed amplifier in 0.18-nm CMOS , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[4]  Shawn S. H. Hsu,et al.  A 70-GHz transformer-peaking broadband amplifier in 0.13-μm CMOS Technology , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[5]  Liang-Hung Lu,et al.  40-Gb/s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0.18-$\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[6]  D.J. Allstot,et al.  Bandwidth Extension Techniques for CMOS Amplifiers , 2006, IEEE Journal of Solid-State Circuits.

[7]  Liang-Hung Lu,et al.  40-Gb / s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0 . 18-m CMOS , 2009 .

[8]  Jun-De Jin,et al.  40-Gb/s Transimpedance Amplifier in 0.18-μm CMOS Technology , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[9]  T. F. Meister,et al.  40 Gbit/s transimpedance amplifier in SiGe bipolar technology for the receiver in optical-fibre TDM links , 1998 .

[10]  H. Shigematsu,et al.  A 49-GHz preamplifier with a transimpedance gain of 52 dBΩ using InP HEMTs , 2001, IEEE J. Solid State Circuits.

[11]  N. Hara,et al.  An over 110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstrip line structure for optical transmission systems , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[12]  Kambiz Moez,et al.  A 10dB 44GHz Loss-Compensated CMOS Distributed Amplifier , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[13]  Liang-Hung Lu,et al.  A 9.5-dB 50-GHz Matrix Distributed Amplifier in 0.18-/spl mu/m CMOS , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[14]  M. Glenn,et al.  5-100 GHz InP coplanar waveguide MMIC distributed amplifier , 1990 .

[15]  Behzad Razavi,et al.  40-Gb/s amplifier and ESD protection circuit in 0.18-/spl mu/m CMOS technology , 2004, IEEE Journal of Solid-State Circuits.

[16]  Stephen P. Boyd,et al.  Bandwidth extension in CMOS with optimized on-chip inductors , 2000, IEEE Journal of Solid-State Circuits.