Monotone Nonparametric Regression

Dans les procedures de regression monotones, on utilise seulement la monotonicite de la fonction de regression. En regression non parametrique, on utilise seulement la lissite supposee. On considere une procedure hybride qui produit des estimateurs monotones avec des proprietes similaires a celles des estimateurs de regression non parametriques

[1]  F. T. Wright The Asymptotic Behavior of Monotone Regression Estimates , 1981 .

[2]  R. Tibshirani,et al.  The Monotone Smoothing of Scatterplots , 1984 .

[3]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[4]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[5]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[6]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[7]  I. W. Wright Splines in Statistics , 1983 .

[8]  H. D. Brunk On the Estimation of Parameters Restricted by Inequalities , 1958 .

[9]  Edward J. Wegman,et al.  Isotonic, Convex and Related Splines , 1980 .

[10]  G. G. Makowski Laws of the Iterated Logarithm for Permuted Random Variables and Regression Applications , 1973 .

[11]  Eugene F. Schuster,et al.  Joint Asymptotic Distribution of the Estimated Regression Function at a Finite Number of Distinct Points , 1972 .

[12]  Luc Devroye,et al.  The uniform convergence of nearest neighbor regression function estimators and their application in optimization , 1978, IEEE Trans. Inf. Theory.

[13]  Gordon Pledger,et al.  On Consistency in Monotonic Regression , 1973 .

[14]  P. Groeneboom Estimating a monotone density , 1984 .

[15]  W. V. Zwet,et al.  COMPARISON OF SEVERAL NONPARAMETRIC ESTIMATORS OF THE FAILURE RATE FUNCTION , 1969 .

[16]  F. T. Wright Monotone Regression Estimates for Grouped Observations , 1982 .

[17]  H. D. Brunk Maximum Likelihood Estimates of Monotone Parameters , 1955 .