Permutation Versus Bootstrap Significance Tests in Multiple Regression and Anova

Kempthorne’s (1952) formulation of the randomization test is extended to yield a permutational analog of the bootstrap significance test. In the new test, residuals of a multiple regression are permuted instead of being bootstrapped. The test is an attractive alternative for Oja’s test that permutes predictors (Austr. J. Statist. 29, 91–100, 1987).

[1]  Joseph P. Romano Bootstrap and randomization tests of some nonparametric hypotheses , 1989 .

[2]  David A. Freedman,et al.  A Nonstochastic Interpretation of Reported Significance Levels , 1983 .

[3]  H. K. Nandi On Analysis of Variance Test , 1951 .

[4]  M. H. Gail,et al.  Tests for no treatment e?ect in randomized clinical trials , 1988 .

[5]  Joseph P. Romano,et al.  A Review of Bootstrap Confidence Intervals , 1988 .

[6]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[7]  R. Beran Prepivoting Test Statistics: A Bootstrap View of Asymptotic Refinements , 1988 .

[8]  E. Pitman Significance Tests Which May be Applied to Samples from Any Populations , 1937 .

[9]  C.J.F. ter Braak,et al.  Partial canonical correspondence analysis , 1988 .

[10]  Joseph P. Romano A Bootstrap Revival of Some Nonparametric Distance Tests , 1988 .

[11]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[12]  Mark F. Collins A Permutation Test for Planar Regression , 1987 .

[13]  P. Sen,et al.  Nonparametric methods in multivariate analysis , 1974 .

[14]  Hannu Oja On Permutation Tests in Multiple Regression and Analysis of Covariance Problems , 1987 .

[15]  E. Pitman SIGNIFICANCE TESTS WHICH MAY BE APPLIED TO SAMPLES FROM ANY POPULATIONS III. THE ANALYSIS OF VARIANCE TEST , 1938 .

[16]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[17]  Hans-Hermann Bock,et al.  Classification and Related Methods of Data Analysis , 1988 .

[18]  R. Beran Simulated Power Functions , 1986 .

[19]  M. Kendall Theoretical Statistics , 1956, Nature.

[20]  P. Hall,et al.  The Effect of Simulation Order on Level Accuracy and Power of Monte Carlo Tests , 1989 .

[21]  T. Speed,et al.  On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9 , 1990 .

[22]  C.J.F. ter Braak,et al.  CANOCO - a FORTRAN program for canonical community ordination by [partial] [etrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1) , 1988 .

[23]  William J. Welch,et al.  Construction of Permutation Tests , 1990 .

[24]  B. M. Brown,et al.  Distribution‐Free Methods in Regression1 , 1982 .