Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain

It is known that the linear Korteweg–de Vries (KdV) equation with homogeneous Dirichlet boundary conditions and Neumann boundary control is not controllable for some critical spatial domains. In this paper, we prove in these critical cases, that the nonlinear KdV equation is locally controllable around the origin provided that the time of control is large enough. It is done by performing a power series expansion of the solution and studying the cascade system resulting of this expansion.

[1]  Lionel Rosier CONTROL OF THE SURFACE OF A FLUID BY A WAVEMAKER , 2004 .

[2]  Lionel Rosier,et al.  Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain , 1997 .

[3]  Sergio Guerrero,et al.  Some exact controllability results for the linear KdV equation and uniform controllability in the zero‐dispersion limit , 2007 .

[4]  Eduardo Cerpa,et al.  Exact Controllability of a Nonlinear Korteweg--de Vries Equation on a Critical Spatial Domain , 2007, SIAM J. Control. Optim..

[5]  Marianne Chapouly,et al.  GLOBAL CONTROLLABILITY OF A NONLINEAR KORTEWEG–DE VRIES EQUATION , 2009 .

[6]  J. Coron Control and Nonlinearity , 2007 .

[7]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[8]  Bing-Yu Zhang,et al.  A Nonhomogeneous Boundary-Value Problem for the Korteweg–de Vries Equation Posed on a Finite Domain , 2003 .

[9]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[10]  LIONEL ROSIER,et al.  Exact Boundary Controllability for the Linear Korteweg--de Vries Equation on the Half-Line , 2000, SIAM J. Control. Optim..

[11]  Justin Holmer The Initial-Boundary Value Problem for the Korteweg–de Vries Equation , 2005 .

[12]  Jean-Michel Coron,et al.  Partial Differential Equations / Optimal Control On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well , 2005 .

[13]  Bing-Yu Zhang,et al.  Exact Boundary Controllability of the Korteweg--de Vries Equation , 1999 .

[14]  Emmanuel Trélat,et al.  GLOBAL STEADY-STATE STABILIZATION AND CONTROLLABILITY OF 1D SEMILINEAR WAVE EQUATIONS , 2006 .

[15]  David L. Russell,et al.  Exact controllability and stabilizability of the Korteweg-de Vries equation , 1996 .

[16]  J. Coron On the controllability of 2-D incompressible perfect fluids , 1996 .

[17]  Jacques-Louis Lions Contrôlabilite exacte et homogénéisation (I) , 1988 .

[18]  Emmanuel Trélat,et al.  Global Steady-State Controllability of One-Dimensional Semilinear Heat Equations , 2004, SIAM J. Control. Optim..

[19]  Jean-Michel Coron,et al.  Exact boundary controllability of a nonlinear KdV equation with critical lengths , 2004 .

[20]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[21]  Jean-Michel Coron,et al.  Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations , 2002 .

[22]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[23]  Bing-Yu Zhang,et al.  A non-homogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain II , 2003 .