Superintegrable Hamiltonian Systems: Geometry and Perturbations
暂无分享,去创建一个
[1] Pantelis A. Damianou,et al. Nonlinear Poisson brackets. , 1989 .
[2] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[3] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[4] J. Pöschel,et al. Nekhoroshev estimates for quasi-convex hamiltonian systems , 1993 .
[5] M. Mazzocco. KAM theorem for generic analytic perturbations of the Euler system , 1997 .
[6] P. Winternitz,et al. Periodicity and quasi-periodicity for super-integrable Hamiltonian systems , 1990, quant-ph/0405017.
[7] S. V. Ngoc,et al. Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type , 2000 .
[8] V. Ngo. Bohr-Sommerfeld conditions for Integrable Systems with critical manifolds of focus-focus type , 1998 .
[9] G. Benettin,et al. Regular and chaotic motions of the fast rotating rigid body: a numerical study , 2002 .
[10] Richard Cushman,et al. Global Aspects of Classical Integrable Systems , 2004 .
[11] Torus Actions and Integrable Systems , 2004, math/0407455.
[12] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[13] T. Ratiu,et al. Compatibility of symplectic structures adapted to noncommutatively integrable systems , 1998 .
[14] N N Nekhoroshev,et al. AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .
[15] N. Steenrod. The Topology of Fibre Bundles. (PMS-14) , 1951 .
[16] Oleg I. Bogoyavlenskij,et al. Extended Integrability and Bi-Hamiltonian Systems , 1998 .
[17] Anthony D. Blaom. A geometric setting for Hamiltonian perturbation theory , 2001 .
[18] J. Moser,et al. Regularization of kepler's problem and the averaging method on a manifold , 1970 .
[19] William Gordon Ritter. Geometric Quantization , 2002 .
[20] T. Delzant,et al. Le Probleme General des Variables Actions-Angles , 1987 .
[21] Darryl D. Holm,et al. CO2 molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy. , 2004, Physical review letters.
[22] V. Maslov,et al. Nonlinear Poisson Brackets: Geometry and Quantization , 1993 .
[23] I. Parasyuk. Coisotropic invariant tori of hamiltonian systems of the quasiclassical theory of motion of a conduction electron , 1990 .
[24] R. Cushman. Normal Form for Hamiltonian Vectorfields with Periodic Flow , 1984 .
[25] W. Miller,et al. Superintegrability in Classical and Quantum Systems , 2004 .
[26] Noncommutative Integrability, Moment Map and Geodesic Flows , 2001, math-ph/0109031.
[27] A. Weinstein. Local structure of Poisson manifolds , 2021, Lectures on Poisson Geometry.
[28] J. E. L.-J.,et al. The Mechanics of the Atom , 1927, Nature.
[29] Anatoliĭ Timofeevich Fomenko,et al. Generalized Liouville method of integration of Hamiltonian systems , 1978 .
[30] Heinz Hannmann. Quasi-periodic Motions of a Rigid Body , 1999 .
[31] Francesco Fassò,et al. Fast rotations of the rigid body: a study by Hamiltonian perturbation theory. Part I , 1996 .
[32] G. Meigniez. Submersions, fibrations and bundles , 2002 .
[33] P. Lochak,et al. Canonical perturbation theory via simultaneous approximation , 1992 .
[34] Francesco Fassò,et al. The Euler-Poinsot top: A non-commutatively integrable system without global action-angle coordinates , 1996 .
[35] A. Giacobbe. Some remarks on the Gelfand-Cetlin system , 2002 .
[36] Quasi-periodicity of motions and complete integrability of Hamiltonian systems , 1998, Ergodic Theory and Dynamical Systems.
[37] I. Parasyuk. Reduction and coisotropic invariant tori of Hamiltonian systems with non-poisson commutative symmetries. I , 1994 .
[38] Long Term Stability of Proper Rotations of the Perturbed Euler Rigid Body , 2004 .
[39] F. Fassò. Hamiltonian perturbation theory on a manifold , 1995 .
[40] Charles-Michel Marle,et al. Symplectic geometry and analytical mechanics , 1987 .
[41] Evans,et al. Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[42] Larry Bates,et al. Monodromy in the champagne bottle , 1991 .
[43] Johannes J. Duistermaat,et al. On global action‐angle coordinates , 1980 .
[44] A. Giacobbe,et al. Geometric structure of “broadly integrable” Hamiltonian systems , 2002 .