Superintegrable Hamiltonian Systems: Geometry and Perturbations

Abstract Many and important integrable Hamiltonian systems are ‘superintegrable’, in the sense that there is an open subset of their 2d-dimensional phase space in which all motions are linear on tori of dimension n<d. A thorough comprehension of these systems requires a description which goes beyond the standard notion of Liouville–Arnold integrability, that is, the existence of an invariant fibration by Lagrangian tori. Instead, the natural object to look at is formed by both the fibration by the (isotropic) invariant tori and by its (coisotropic) polar foliation, which together form what in symplectic geometry is called a ‘dual pair’, or ‘bifoliation’, or ‘bifibration’. We review this geometric structure, relating it to the dynamical properties of superintegrable systems and pointing out its importance for a thorough understanding of these systems.

[1]  Pantelis A. Damianou,et al.  Nonlinear Poisson brackets. , 1989 .

[2]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[3]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[4]  J. Pöschel,et al.  Nekhoroshev estimates for quasi-convex hamiltonian systems , 1993 .

[5]  M. Mazzocco KAM theorem for generic analytic perturbations of the Euler system , 1997 .

[6]  P. Winternitz,et al.  Periodicity and quasi-periodicity for super-integrable Hamiltonian systems , 1990, quant-ph/0405017.

[7]  S. V. Ngoc,et al.  Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type , 2000 .

[8]  V. Ngo Bohr-Sommerfeld conditions for Integrable Systems with critical manifolds of focus-focus type , 1998 .

[9]  G. Benettin,et al.  Regular and chaotic motions of the fast rotating rigid body: a numerical study , 2002 .

[10]  Richard Cushman,et al.  Global Aspects of Classical Integrable Systems , 2004 .

[11]  Torus Actions and Integrable Systems , 2004, math/0407455.

[12]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[13]  T. Ratiu,et al.  Compatibility of symplectic structures adapted to noncommutatively integrable systems , 1998 .

[14]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[15]  N. Steenrod The Topology of Fibre Bundles. (PMS-14) , 1951 .

[16]  Oleg I. Bogoyavlenskij,et al.  Extended Integrability and Bi-Hamiltonian Systems , 1998 .

[17]  Anthony D. Blaom A geometric setting for Hamiltonian perturbation theory , 2001 .

[18]  J. Moser,et al.  Regularization of kepler's problem and the averaging method on a manifold , 1970 .

[19]  William Gordon Ritter Geometric Quantization , 2002 .

[20]  T. Delzant,et al.  Le Probleme General des Variables Actions-Angles , 1987 .

[21]  Darryl D. Holm,et al.  CO2 molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy. , 2004, Physical review letters.

[22]  V. Maslov,et al.  Nonlinear Poisson Brackets: Geometry and Quantization , 1993 .

[23]  I. Parasyuk Coisotropic invariant tori of hamiltonian systems of the quasiclassical theory of motion of a conduction electron , 1990 .

[24]  R. Cushman Normal Form for Hamiltonian Vectorfields with Periodic Flow , 1984 .

[25]  W. Miller,et al.  Superintegrability in Classical and Quantum Systems , 2004 .

[26]  Noncommutative Integrability, Moment Map and Geodesic Flows , 2001, math-ph/0109031.

[27]  A. Weinstein Local structure of Poisson manifolds , 2021, Lectures on Poisson Geometry.

[28]  J. E. L.-J.,et al.  The Mechanics of the Atom , 1927, Nature.

[29]  Anatoliĭ Timofeevich Fomenko,et al.  Generalized Liouville method of integration of Hamiltonian systems , 1978 .

[30]  Heinz Hannmann Quasi-periodic Motions of a Rigid Body , 1999 .

[31]  Francesco Fassò,et al.  Fast rotations of the rigid body: a study by Hamiltonian perturbation theory. Part I , 1996 .

[32]  G. Meigniez Submersions, fibrations and bundles , 2002 .

[33]  P. Lochak,et al.  Canonical perturbation theory via simultaneous approximation , 1992 .

[34]  Francesco Fassò,et al.  The Euler-Poinsot top: A non-commutatively integrable system without global action-angle coordinates , 1996 .

[35]  A. Giacobbe Some remarks on the Gelfand-Cetlin system , 2002 .

[36]  Quasi-periodicity of motions and complete integrability of Hamiltonian systems , 1998, Ergodic Theory and Dynamical Systems.

[37]  I. Parasyuk Reduction and coisotropic invariant tori of Hamiltonian systems with non-poisson commutative symmetries. I , 1994 .

[38]  Long Term Stability of Proper Rotations of the Perturbed Euler Rigid Body , 2004 .

[39]  F. Fassò Hamiltonian perturbation theory on a manifold , 1995 .

[40]  Charles-Michel Marle,et al.  Symplectic geometry and analytical mechanics , 1987 .

[41]  Evans,et al.  Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[42]  Larry Bates,et al.  Monodromy in the champagne bottle , 1991 .

[43]  Johannes J. Duistermaat,et al.  On global action‐angle coordinates , 1980 .

[44]  A. Giacobbe,et al.  Geometric structure of “broadly integrable” Hamiltonian systems , 2002 .