On error bounds for lower semicontinuous functions

Abstract.We give some sufficient conditions for proper lower semicontinuous functions on metric spaces to have error bounds (with exponents). For a proper convex function f on a normed space X the existence of a local error bound implies that of a global error bound. If in addition X is a Banach space, then error bounds can be characterized by the subdifferential of f. In a reflexive Banach space X, we further obtain several sufficient and necessary conditions for the existence of error bounds in terms of the lower Dini derivative of f.