Variation of coulombic efficiency versus upper cutoff potential of Li-ion cells tested with aggressive protocols

[1]  Tsutomu Ohzuku,et al.  Factor affecting the capacity retention of lithium-ion cells , 1995 .

[2]  Jean-Marie Tarascon,et al.  Materials' effects on the elevated and room temperature performance of CLiMn2O4 Li-ion batteries , 1997 .

[3]  K. Amine,et al.  Factors responsible for impedance rise in high power lithium ion batteries , 2001 .

[4]  Yo Kobayashi,et al.  Cycle life estimation of Lithium secondary battery by extrapolation method and accelerated aging test , 2001 .

[5]  Hongsup Lim,et al.  Factors that affect cycle-life and possible degradation mechanisms of a Li-ion cell based on LiCoO2 , 2002 .

[6]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[7]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[8]  Shengbo Zhang The effect of the charging protocol on the cycle life of a Li-ion battery , 2006 .

[9]  I. Bloom,et al.  Performance degradation of high-power lithium-ion cells—Electrochemistry of harvested electrodes , 2007 .

[10]  Hitoshi Naito,et al.  Electrode structure analysis and surface characterization for lithium-ion cells simulated low-Earth-orbit satellite operation I. Electrochemical behavior and structure analysis , 2007 .

[11]  T. Hattori,et al.  Improved LiMn2O4/Graphite Li-Ion Cells at 55°C , 2007 .

[12]  Zhixing Wang,et al.  Performance and capacity fading reason of LiMn2O4/graphite batteries after storing at high temperature , 2009 .

[13]  Yang-Kook Sun,et al.  Role of surface coating on cathode materials for lithium-ion batteries , 2010 .

[14]  B. Lucht,et al.  Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries , 2010 .

[15]  S. Trussler,et al.  Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries , 2010 .

[16]  Xuemei Zhao,et al.  A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells , 2011 .

[17]  Yuji Kojima,et al.  Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated tem , 2011 .

[18]  J. C. Burns,et al.  Interpreting High Precision Coulometry Results on Li-ion Cells , 2011 .

[19]  J. C. Burns,et al.  Introducing Symmetric Li-Ion Cells as a Tool to Study Cell Degradation Mechanisms , 2011 .

[20]  J. C. Burns,et al.  Evaluation of Effects of Additives in Wound Li-Ion Cells Through High Precision Coulometry , 2011 .

[21]  J. C. Burns,et al.  The Use of Elevated Temperature Storage Experiments to Learn about Parasitic Reactions in Wound LiCoO2/Graphite Cells , 2011 .

[22]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[23]  J. C. Burns,et al.  Impedance Reducing Additives and Their Effect on Cell Performance I. LiN(CF3SO2)2 , 2012 .

[24]  J. C. Burns,et al.  Predicting and Extending the Lifetime of Li-Ion Batteries , 2013 .

[25]  Hannah M. Dahn,et al.  Improving Precision and Accuracy in Coulombic Efficiency Measurements of Li-Ion Batteries , 2013 .

[26]  J. C. Burns,et al.  Study of Electrolyte Additives Using Electrochemical Impedance Spectroscopy on Symmetric Cells , 2013 .

[27]  Hui Ye,et al.  Ultra High-Precision Studies of Degradation Mechanisms in Aged LiCoO2/Graphite Li-Ion Cells , 2016 .

[28]  J. Dahn,et al.  Studies of the Effect of Varying Prop-1-ene-1,3-sultone Content in Lithium Ion Pouch Cells , 2014 .

[29]  J. Dahn,et al.  Comparative Study on Prop-1-ene-1,3-sultone and Vinylene Carbonate as Electrolyte Additives for Li(Ni1/3Mn13Co1/3)O2/Graphite Pouch Cells , 2014 .

[30]  Masahiro Kinoshita,et al.  Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges) , 2014 .

[31]  J. Dahn,et al.  Improving the High Voltage Cycling of Li[Ni0.42Mn0.42Co0.16]O2 (NMC442)/Graphite Pouch Cells Using Electrolyte Additives , 2014 .

[32]  D. Stevens,et al.  An Apparatus for the Study of In Situ Gas Evolution in Li-Ion Pouch Cells , 2014 .

[33]  Weishan Li,et al.  Understanding self-discharge mechanism of layered nickel cobalt manganese oxide at high potential , 2015 .

[34]  Jeff Dahn,et al.  Studies of the Effect of High Voltage on the Impedance and Cycling Performance of Li[Ni0.4Mn0.4Co0.2]O2/Graphite Lithium-Ion Pouch Cells , 2015 .

[35]  J. Dahn,et al.  Sulfolane-Based Electrolyte for High Voltage Li(Ni0.42Mn0.42Co0.16)O2 (NMC442)/Graphite Pouch Cells , 2015 .

[36]  J. Dahn,et al.  A Survey of In Situ Gas Evolution during High Voltage Formation in Li-Ion Pouch Cells , 2015 .

[37]  J. Dahn,et al.  Effects of Upper Cutoff Potential on LaPO4-Coated and Uncoated Li[Ni0.42Mn0.42Co0.16]O2/Graphite Pouch Cells , 2016 .