A golden ratio notation for the real numbers
暂无分享,去创建一个
[1] Ker-I Ko,et al. Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.
[2] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[3] Norman Thomson. Functional programming with APL2 , 1993, APLQ.
[4] Ian Holyer. Functional programming with Miranda , 1991 .
[5] H. K. Moulton,et al. Report , 1927, Datenschutz und Datensicherheit - DuD.
[6] L.E.J. Brouwer. 1924 D – Mathematics. – “Beweis, dass jede volle Funktion gleichmässig stetig ist” , 1975 .
[7] Hans-J. Boehm. Constructive real interpretation of numerical programs , 1987, PLDI 1987.
[8] W. Parry. On theβ-expansions of real numbers , 1960 .
[9] Algirdas Avizienis,et al. Binary-compatible signed-digit arithmetic , 1899, AFIPS '64 (Fall, part I).
[10] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[11] Robert Cartwright,et al. Exact real arithmetic formulating real numbers as functions , 1990 .
[12] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[14] Jean Vuillemin,et al. Exact real computer arithmetic with continued fractions , 1988, IEEE Trans. Computers.
[15] P. Martin-Löf. Notes on constructive mathematics , 1970 .
[16] E. Wiedmer,et al. Computing with Infinite Objects , 1980, Theor. Comput. Sci..