Gray Coding in Evolutionary Multicriteria Optimization: Application in Frame Structural Optimum Design

A comparative study of the use of Gray coding in multicriteria evolutionary optimisation is performed using the SPEA2 and NSGAII algorithms and applied to a frame structural optimisation problem. A double minimization is handled: constrained mass and number of different cross-section types. Influence of various mutation rates is considered. The comparative statistical results of the test case cover a convergence study during evolution by means of certain metrics that measure front amplitude and distance to the optimal front. Results in a 55 bar-sized frame test case show that the use of the Standard Binary Reflected Gray code compared versus Binary code allows to obtain fast and more accurate solutions, more coverage of non-dominated fronts; both with improved robustness in frame structural multiobjective optimum design.

[1]  L. Darrell Whitley,et al.  Properties of Gray and Binary Representations , 2004, Evolutionary Computation.

[2]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[3]  Min Liu,et al.  Optimal seismic design of steel frame buildings based on life cycle cost considerations , 2003 .

[4]  Patrick D. Surry,et al.  Fundamental Limitations on Search Algorithms: Evolutionary Computing in Perspective , 1995, Computer Science Today.

[5]  Uday Kumar Chakraborty,et al.  An analysis of Gray versus binary encoding in genetic search , 2003, Inf. Sci..

[6]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[7]  David Greiner,et al.  MULTIOBJECTIVE OPTIMIZATION OF BAR STRUCTURES BY PARETO-GA , 2000 .

[8]  Jan van Leeuwen,et al.  Computer Science Today , 1995, Lecture Notes in Computer Science.

[9]  G. Winter,et al.  Optimising frame structures by different strategies of genetic algorithms , 2001 .

[10]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[11]  L. Darrell Whitley,et al.  Transforming the search space with Gray coding , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[12]  Torvald Trondsen,et al.  Optimum design methods , 1969 .

[13]  Juhani Koski,et al.  Multicriterion Structural Optimization , 1993 .

[14]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[15]  Hojjat Adeli,et al.  Life‐cycle cost optimization of steel structures , 2002 .

[16]  Alan D. Christiansen,et al.  Multiobjective optimization of trusses using genetic algorithms , 2000 .

[17]  Thomas C. Peachey,et al.  The Nature of Mutation in Genetic Algorithms , 1995, ICGA.

[18]  David E. Goldberg,et al.  ENGINEERING OPTIMIZATION VIA GENETIC ALGORITHM, IN WILL , 1986 .

[19]  Scott A. Burns,et al.  Recent advances in optimal structural design , 2002 .

[20]  L. D. Whitley A free lunch proof for Gray versus Binary encodings , 1999 .

[21]  J. David Schaffer,et al.  Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms , 1988, ML.

[22]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[23]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[24]  G. Rand Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop , 1982 .

[25]  Carla Savage,et al.  A Survey of Combinatorial Gray Codes , 1997, SIAM Rev..

[26]  Alan D. Christiansen,et al.  An empirical study of evolutionary techniques for multiobjective optimization in engineering design , 1996 .

[27]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[28]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[29]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[30]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[31]  G. Winter,et al.  Single and multiobjective frame optimization by evolutionary algorithms and the auto-adaptive rebirth operator , 2004 .

[32]  D. Grierson,et al.  Optimal sizing, geometrical and topological design using a genetic algorithm , 1993 .

[33]  M. Galante,et al.  GENETIC ALGORITHMS AS AN APPROACH TO OPTIMIZE REAL‐WORLD TRUSSES , 1996 .