Sticholysin recognition of ceramide-phosphoethanolamine.

[1]  G. Anderluh,et al.  Pore-forming moss protein bryoporin is structurally and mechanistically related to actinoporins from evolutionarily distant cnidarians , 2022, The Journal of biological chemistry.

[2]  J. Slotte,et al.  Structural foundations of sticholysin functionality. , 2021, Biochimica et biophysica acta. Proteins and proteomics.

[3]  Toshihide Kobayashi,et al.  Impact of Intrinsic and Extrinsic Factors on Cellular Sphingomyelin Imaging with Specific Reporter Proteins , 2021, Contact (Thousand Oaks (Ventura County, Calif.)).

[4]  P. Maček,et al.  Ceramide phosphoethanolamine, an enigmatic cellular membrane sphingolipid. , 2019, Biochimica et biophysica acta. Biomembranes.

[5]  Esperanza Rivera-de-Torre,et al.  Stichodactyla helianthus' de novo transcriptome assembly: Discovery of a new actinoporin isoform , 2018, Toxicon : official journal of the International Society on Toxinology.

[6]  J. Gavilanes,et al.  One single salt bridge explains the different cytolytic activities shown by actinoporins sticholysin I and II from the venom of Stichodactyla helianthus. , 2017, Archives of biochemistry and biophysics.

[7]  J. Slotte,et al.  Differential Effect of Bilayer Thickness on Sticholysin Activity. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[8]  Jiahui Chen,et al.  Improvements to the APBS biomolecular solvation software suite , 2017, Protein science : a publication of the Protein Society.

[9]  J. Slotte,et al.  Differential Effect of Membrane Composition on the Pore-Forming Ability of Four Different Sea Anemone Actinoporins. , 2016, Biochemistry.

[10]  J. Slotte,et al.  Regulation of Sticholysin II-Induced Pore Formation by Lipid Bilayer Composition, Phase State, and Interfacial Properties. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[11]  J. Slotte,et al.  Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers. , 2016, Biochimica et biophysica acta.

[12]  A. García-Sáez,et al.  Differences in activity of actinoporins are related with the hydrophobicity of their N-terminus. , 2015, Biochimie.

[13]  K. Tsumoto,et al.  Structural basis for self-assembly of a cytolytic pore lined by protein and lipid , 2015, Nature Communications.

[14]  G. Anderluh,et al.  Imaging the lipid-phase-dependent pore formation of equinatoxin II in droplet interface bilayers. , 2014, Biophysical journal.

[15]  Sanna P. Niinivehmas,et al.  2NH and 3OH are crucial structural requirements in sphingomyelin for sticholysin II binding and pore formation in bilayer membranes. , 2013, Biochimica et biophysica acta.

[16]  J. Gavilanes,et al.  The behavior of sea anemone actinoporins at the water-membrane interface. , 2011, Biochimica et biophysica acta.

[17]  A. Viguera,et al.  Purification, cloning and characterization of fragaceatoxin C, a novel actinoporin from the sea anemone Actinia fragacea. , 2009, Toxicon : official journal of the International Society on Toxinology.

[18]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[19]  A. Mechaly,et al.  Crystallization and preliminary crystallographic analysis of fragaceatoxin C, a pore-forming toxin from the sea anemone Actinia fragacea. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[20]  P. Schwille,et al.  Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. , 2008, Biophysical journal.

[21]  J. Gavilanes,et al.  Sea anemone actinoporins: the transition from a folded soluble state to a functionally active membrane-bound oligomeric pore. , 2007, Current protein & peptide science.

[22]  J. Danielsson,et al.  Kinetic models for peptide-induced leakage from vesicles and cells , 2007, European Biophysics Journal.

[23]  J. Slotte,et al.  On the importance of the phosphocholine methyl groups for sphingomyelin/cholesterol interactions in membranes: a study with ceramide phosphoethanolamine. , 2005, Biophysical journal.

[24]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[25]  M. Ruiz-Argüello,et al.  Lipid Phase Coexistence Favors Membrane Insertion of Equinatoxin-II, a Pore-forming Toxin from Actinia equina* , 2004, Journal of Biological Chemistry.

[26]  Juan A Hermoso,et al.  Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. , 2003, Structure.

[27]  J. Arrondo,et al.  Differential interaction of equinatoxin II with model membranes in response to lipid composition. , 2001, Biophysical journal.

[28]  P. Nichols,et al.  Lipids of gelatinous antarctic zooplankton: Cnidaria and Ctenophora , 2000, Lipids.

[29]  J. Gavilanes,et al.  Mechanism of the leakage induced on lipid model membranes by the hemolytic protein sticholysin II from the sea anemone Stichodactyla helianthus. , 1998, European journal of biochemistry.

[30]  M. Serra,et al.  Mechanism of membrane permeabilization by sticholysin I, a cytolysin isolated from the venom of the sea anemone Stichodactyla helianthus. , 1996, Biochemistry.

[31]  G. Paratcha,et al.  The molecular basis of the self/nonself selectivity of a coelenterate toxin. , 1995, Biochemical and biophysical research communications.

[32]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[33]  P. Maček Polypeptide cytolytic toxins from sea anemones (Actiniaria). , 1992, FEMS microbiology immunology.

[34]  N. Navarro,et al.  31P NMR phospholipid profile study of seven sea anemone species , 1992 .

[35]  J. Slotte,et al.  Biophysical approaches to study actinoporin-lipid interactions. , 2021, Methods in enzymology.

[36]  J. Gavilanes,et al.  The Metamorphic Transformation of a Water-Soluble Monomeric Protein Into an Oligomeric Transmembrane Pore , 2017 .

[37]  J. Gavilanes,et al.  Silent mutations at the 5'-end of the cDNA of actinoporins from the sea anemone Stichodactyla helianthus allow their heterologous overproduction in Escherichia coli. , 2007, Journal of biotechnology.

[38]  G. Rouser,et al.  Phospholipids of the sea anemone: Quantitative distribution; absence of carbon-phosphorus linkages in glycerol phospholipids; structural elucidation of ceramide aminoethylphosphonate , 2006, Lipids.

[39]  P. Maček,et al.  Isolation and characterization of three lethal and hemolytic toxins from the sea anemone Actinia equina L. , 1988, Toxicon : official journal of the International Society on Toxinology.

[40]  J. Joseph Lipid composition of marine and estuarine invertebrates: porifera and cnidaria. , 1979, Progress in lipid research.

[41]  I. Ferlan,et al.  Equinatoxin, a lethal protein from Actinia equina--I. Purification and characterization. , 1974, Toxicon : official journal of the International Society on Toxinology.