Optical design and characterization of an advanced computational imaging system

We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the optical requirement trades associated with custom and commercial-off-the-shelf (COTS) optics and converge on the development of two low-cost and robust COTS testbeds. The first is a coded-aperture programmable pixel imager employing a digital micromirror device (DMD) for image plane per-pixel oversampling and spatial super-resolution experiments. The second is a simultaneous pupil-encoded and time-encoded imager employing a DMD for pupil apodization or a deformable mirror for wavefront coding experiments. These two testbeds are built to leverage two MIT Lincoln Laboratory focal plane arrays – an orthogonal transfer CCD with non-uniform pixel sampling and on-chip dithering and a digital readout integrated circuit (DROIC) with advanced on-chip per-pixel processing capabilities. This paper discusses the derivation of optical component requirements, optical design metrics, and performance analyses for the two testbeds built.

[1]  L. Carin,et al.  Compressive extended depth of field using image space coding , 2014 .

[2]  Axel Pinz,et al.  Computer Vision – ECCV 2006 , 2006, Lecture Notes in Computer Science.

[3]  Edward R. Dowski,et al.  A New Paradigm for Imaging Systems , 2002, PICS.

[4]  Yoav Y Schechner,et al.  Depth from diffracted rotation. , 2006, Optics letters.

[5]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[6]  B. Tyrrell,et al.  Time Delay Integration and In-Pixel Spatiotemporal Filtering Using a Nanoscale Digital CMOS Focal Plane Readout , 2009, IEEE Transactions on Electron Devices.

[7]  Henry Arguello,et al.  Compressive Coded Aperture Spectral Imaging: An Introduction , 2014, IEEE Signal Processing Magazine.

[8]  Megan Blackwell,et al.  Smart pixel imaging with computational-imaging arrays , 2014, Defense + Security Symposium.

[9]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[10]  Richard G. Baraniuk,et al.  An Architecture for Compressive Imaging , 2006, 2006 International Conference on Image Processing.

[11]  Amit Ashok,et al.  Pseudorandom phase masks for superresolution imaging from subpixel shifting. , 2007, Applied optics.

[12]  Christy Fernandez-Cull,et al.  Digital pixel CMOS focal plane array with on-chip multiply accumulate units for low-latency image processing , 2014, Defense + Security Symposium.

[13]  R. Yuste,et al.  Instantaneous Three-dimensional Sensing Using Spatial Light Modulator Illumination with Extended Depth of Field Imaging References and Links , 2022 .

[14]  Amit K. Agrawal,et al.  Coded exposure photography: motion deblurring using fluttered shutter , 2006, ACM Trans. Graph..

[15]  Amit Ashok,et al.  Compressive imaging system design using task-specific information. , 2008, Applied optics.

[16]  Ravindra A. Athale,et al.  Modified light field architecture for reconfigurable multimode imaging , 2009, Optical Engineering + Applications.

[17]  Peter Kohl,et al.  Temporal Pixel Multiplexing for simultaneous high-speed high-resolution imaging , 2010, Nature Methods.

[18]  A. Cheng,et al.  simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing , 2011 .

[19]  Peng Ye,et al.  Optical calibration of a digital micromirror device (DMD)-based compressive imaging (CI) system , 2009, MOEMS-MEMS.

[20]  Peter Jansen,et al.  Adaptive, feature-specific spectral imaging classifier , 2011 .

[21]  Shree K. Nayar,et al.  Video super-resolution using controlled subpixel detector shifts , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  E. Loewen DIFFRACTION GRATING HANDBOOK , 1970 .

[23]  José Sasián,et al.  Introduction to Aberrations in Optical Imaging Systems: Preface , 2012 .

[24]  Ramesh Raskar,et al.  Sub-pixel Layout for Super-Resolution with Images in the Octic Group , 2014, ECCV.

[25]  R. Hamilton Shepard,et al.  Simultaneous Dynamic Pupil Coding with On-chip Coded Aperture Temporal Imaging , 2014 .

[26]  Barry E. Burke,et al.  An orthogonal-transfer CCD imager , 1994 .

[27]  Joseph P. Rice,et al.  DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors , 2009, MOEMS-MEMS.

[28]  Rama Chellappa,et al.  P2C2: Programmable pixel compressive camera for high speed imaging , 2011, CVPR 2011.

[29]  Suliana Manley,et al.  Improved 3D Superresolution Localization Microscopy Using Adaptive Optics , 2014 .

[30]  Ramesh Raskar,et al.  Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing , 2007, ACM Trans. Graph..

[31]  G. Frankowski,et al.  DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology , 2009, MOEMS-MEMS.

[32]  Barry E. Burke,et al.  THE ORTHOGONAL TRANSFER CCD , 1997, astro-ph/9705165.

[33]  Guillermo Sapiro,et al.  Coded aperture compressive temporal imaging , 2013, Optics express.