Attractor and saddle node dynamics in heterogeneous neural fields

BackgroundWe present analytical and numerical studies on the linear stability of spatially non-constant stationary states in heterogeneous neural fields for specific synaptic interaction kernels.MethodsThe work shows the linear stabiliy analysis of stationary states and the implementation of a nonlinear heteroclinic orbit.ResultsWe find that the stationary state obeys the Hammerstein equation and that the neural field dynamics may obey a saddle-node bifurcation. Moreover our work takes up this finding and shows how to construct heteroclinic orbits built on a sequence of saddle nodes on multiple hierarchical levels on the basis of a Lotka-Volterra population dynamics.ConclusionsThe work represents the basis for future implementation of meta-stable attractor dynamics observed experimentally in neural population activity, such as Local Field Potentials and EEG.

[1]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[2]  W. Freeman Evidence from human scalp EEG of global chaotic itinerancy , 2022 .

[3]  Mehdi Dehghan,et al.  Solution of nonlinear Fredholm-Hammerstein integral equations by using semiorthogonal spline wavelets , 2005 .

[4]  Axel Hutt,et al.  Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  BART KOSKO,et al.  Bidirectional associative memories , 1988, IEEE Trans. Syst. Man Cybern..

[6]  Stefan J. Kiebel,et al.  A Hierarchical Neuronal Model for Generation and Online Recognition of Birdsongs , 2011, PLoS Comput. Biol..

[7]  W. Freeman Evidence from human scalp electroencephalograms of global chaotic itinerancy. , 2003, Chaos.

[8]  Olivier D. Faugeras,et al.  Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations , 2009, SIAM J. Appl. Dyn. Syst..

[9]  P. Bressloff Spatiotemporal dynamics of continuum neural fields , 2012 .

[10]  Axel Hutt,et al.  Analysis and modeling of quasi-stationary multivariate time series and their application to middle latency auditory evoked potentials , 2003 .

[11]  I. Tsuda Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. , 2001, The Behavioral and brain sciences.

[12]  V. Zhigulin,et al.  On the origin of reproducible sequential activity in neural circuits. , 2004, Chaos.

[13]  S. Coombes,et al.  Pulsating fronts in periodically modulated neural field models. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  R. Potthast,et al.  Inverse problems in dynamic cognitive modeling. , 2009, Chaos.

[15]  Stephen Coombes,et al.  Large-scale neural dynamics: Simple and complex , 2010, NeuroImage.

[16]  Jürgen Appell,et al.  How to Solve Hammerstein Equations , 2006 .

[17]  Axel Hutt,et al.  Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  G. Lord,et al.  Waves and bumps in neuronal networks with axo-dendritic synaptic interactions , 2003 .

[19]  Bernhard Hellwig,et al.  A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex , 2000, Biological Cybernetics.

[20]  S. Coombes,et al.  WAVES IN RANDOM NEURAL MEDIA , 2012 .

[21]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[22]  A. Hutt,et al.  Wave fronts in inhomogeneous neural field models , 2009 .

[23]  Roland Potthast,et al.  Existence and properties of solutions for neural field equations , 2009 .

[24]  A. Hutt,et al.  Effects of the anesthetic agent propofol on neural populations , 2010, Cognitive Neurodynamics.

[25]  G. Laurent,et al.  Transient Dynamics versus Fixed Points in Odor Representations by Locust Antennal Lobe Projection Neurons , 2005, Neuron.

[26]  Tomoki Fukai,et al.  A Simple Neural Network Exhibiting Selective Activation of Neuronal Ensembles: From Winner-Take-All to Winners-Share-All , 1997, Neural Computation.

[27]  Amir C. Akhavan,et al.  Parametric Population Representation of Retinal Location: Neuronal Interaction Dynamics in Cat Primary Visual Cortex , 1999, The Journal of Neuroscience.

[28]  Józef Banaś,et al.  Integrable solutions of Hammerstein and Urysohn integral equations , 1989, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[29]  Roland Potthast,et al.  A Dynamic Field Account of Language-Related Brain Potentials , 2012 .

[30]  Karl J. Friston,et al.  Principles of Brain Dynamics: Global State Interactions , 2012 .

[31]  Paul C. Bressloff,et al.  Traveling Pulses and Wave Propagation Failure in Inhomogeneous Neural Media , 2008, SIAM J. Appl. Dyn. Syst..

[32]  D. Liley,et al.  Modeling electrocortical activity through improved local approximations of integral neural field equations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Karl J. Friston,et al.  Recognizing Sequences of Sequences , 2009, PLoS Comput. Biol..

[34]  P. Bressloff,et al.  PHYSICS OF THE EXTENDED NEURON , 1997 .

[35]  A. Hammerstein Nichtlineare Integralgleichungen nebst Anwendungen , 1930 .

[36]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[37]  P. Bressloff Traveling fronts and wave propagation failure in an inhomogeneous neural network , 2001 .

[38]  G. Ermentrout,et al.  Existence and uniqueness of travelling waves for a neural network , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[39]  Gilles Laurent,et al.  Transient Dynamics for Neural Processing , 2008, Science.

[40]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[41]  J A Kelso,et al.  Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Paul C. Bressloff,et al.  Stimulus-Locked Traveling Waves and Breathers in an Excitatory Neural Network , 2005, SIAM J. Appl. Math..

[43]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[44]  M. Sene,et al.  An Iterative Algorithm for Approximating Solutions of Hammerstein Integral Equations , 2013 .

[45]  M S Turner,et al.  Persistent fluctuations of activity in undriven continuum neural field models with power-law connections. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  S. Coombes,et al.  Bumps, breathers, and waves in a neural network with spike frequency adaptation. , 2005, Physical review letters.

[47]  Roland Potthast,et al.  Inverse Problems in Neural Field Theory , 2009, SIAM J. Appl. Dyn. Syst..

[48]  Hermann Haken,et al.  Synergetics: An Introduction , 1983 .

[49]  Ramón Huerta,et al.  Transient Cognitive Dynamics, Metastability, and Decision Making , 2008, PLoS Comput. Biol..