On the global approximate controllability in small time of semiclassical 1-D Schrödinger equations between two states with positive quantum densities

In this paper, we study, in the semiclassical sense, the global approximate controllability in small time of the quantum density and quantum momentum of the 1-D semiclassical cubic Schrödinger equation with two controls between two states with positive quantum densities. We first control the asymptotic expansions of the zeroth and first order of the physical observables via Agrachev-Sarychev’s method. Then we conclude the proof through techniques of semiclassical approximation of the nonlinear Schrödinger equation.

[1]  Jean-Michel Coron,et al.  Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations , 2002 .

[2]  Thomas Alazard,et al.  Supercritical Geometric Optics for Nonlinear Schrödinger Equations , 2007, 0704.2488.

[3]  F. Lin,et al.  Semiclassical Limit of the Gross-Pitaevskii Equation in an Exterior Domain , 2006 .

[4]  Andrey A. Agrachev,et al.  Controllability of 2D Euler and Navier-Stokes Equations by Degenerate Forcing , 2005 .

[5]  Andrey Sarychev,et al.  Navier–Stokes Equations: Controllability by Means of Low Modes Forcing , 2005 .

[6]  H. Nersisyan Controllability of 3D incompressible Euler equations by a finite-dimensional external force , 2008, 0810.3297.

[7]  Olivier Glass,et al.  On the controllability of the 1-D isentropic Euler equation , 2007 .

[8]  Ping Zhang,et al.  Wigner Measure and the Semiclassical Limit of Schrödinger-Poisson Equations , 2002, SIAM J. Math. Anal..

[9]  Jean-Michel Coron,et al.  Global Exact Controllability of the 2D Navier-Stokes Equations on a Manifold without boundary , 1996 .

[10]  A. Shirikyan Control theory for the Burgers equation: Agrachev-Sarychev approach , 2017, 1712.09807.

[11]  Amaury Hayat,et al.  PI controller for the general Saint-Venant equations , 2018 .

[12]  J. Coron On the controllability of 2-D incompressible perfect fluids , 1996 .

[13]  Controllability of the 3D Compressible Euler System , 2009, 0911.1446.

[14]  Karine Beauchard,et al.  Local controllability of 1D linear and nonlinear Schr , 2010, 1001.3288.

[16]  Alessandro Duca,et al.  Bilinear control and growth of Sobolev norms for the nonlinear Schr\"odinger equation , 2021, 2101.12103.

[17]  J. Coron Control and Nonlinearity , 2007 .

[18]  Armen Shirikyan,et al.  Approximate Controllability of Three-Dimensional Navier–Stokes Equations , 2006 .

[19]  张平 SEMICLASSICAL LIMIT OF NONLINEAR SCHROEDINGER EQUATION(II) , 2002 .

[20]  Shengquan Xiang,et al.  Boundary stabilization of focusing NLKG near unstable equilibria: radial case , 2020, 2004.07616.

[21]  Andrey Sarychev Controllability of the cubic Schroedinger equation via a low-dimensional source term , 2011 .

[22]  E. Fernández-Caraa,et al.  Local exact controllability of the Navier – Stokes system ✩ , 2004 .

[23]  Jean-Michel Coron,et al.  Stabilization of the Linearized Water Tank System , 2021, Archive for Rational Mechanics and Analysis.

[24]  H. B. Veiga,et al.  Perturbation theorems for linear hyperbolic mixed problems and applications to the compressible euler equations , 1993 .

[25]  G. Lebeau Contrôle de l'équation de Schrödinger , 1992 .

[26]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[27]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[28]  E. Grenier,et al.  Semiclassical limit of the nonlinear Schrödinger equation in small time , 1998 .

[29]  Olivier Glass,et al.  Exact boundary controllability of 3-D Euler equation , 2000 .