MAD ADAPTIVE OPTICS IMAGING OF HIGH-LUMINOSITY QUASARS: A PILOT PROJECT

We present near-IR images of five luminous quasars at z~2 and one at z~4 obtained with an experimental adaptive optics instrument at the ESO Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these non optimal conditions, the resulting images of point sources have cores of FWHM ~0.2 arcsec. We are able to characterize the host galaxy properties for 2 sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with adaptive optics systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for QSOs at z = 2 with nucleus K-magnitude spanning from 15 to 20 (corresponding to absolute magnitude -31 to -26) and host galaxies that are 4 mag fainter than their nuclei.

[1]  M. Uslenghi,et al.  Near-Infrared Adaptive Optics Imaging of High-Redshift Quasars , 2007, 0710.4863.

[2]  Norbert Hubin,et al.  The CAMCAO infrared camera , 2004, SPIE Astronomical Telescopes + Instrumentation.

[3]  D. O. Astronomy,et al.  High-redshift quasar host galaxies with adaptive optics , 2005, astro-ph/0503284.

[4]  M. Colpi,et al.  GROWING MASSIVE BLACK HOLE PAIRS IN MINOR MERGERS OF DISK GALAXIES , 2010, 1002.1712.

[5]  J. Dunlop,et al.  A COMPARATIVE HST IMAGING STUDY OF THE HOST GALAXIES OF RADIO-QUIET QUASARS, RADIO-LOUD QUASARS AND RADIO GALAXIES - I , 1998, astro-ph/9809030.

[6]  Roberto Ricci,et al.  The Australia Telescope 20 GHz Survey: the source catalogue , 2009, 0911.0002.

[7]  Ralf Bender,et al.  THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.

[8]  P. Hewett,et al.  A High Signal-to-Noise Ratio Composite Quasar Spectrum , 1991 .

[9]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[10]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[11]  R. Brast,et al.  MCAO near-IR photometry of the globular cluster NGC 6388: MAD observations in crowded fields , 2008, 0810.2248.

[12]  Davis,et al.  Observations of Quasar Hosts with Adaptive Optics at Lick Observatory , 2002, astro-ph/0209088.

[13]  Daniela Fantinel,et al.  AETC: Advanced Exposure Time Calculator , 2011, Optical Engineering + Applications.

[14]  Bing Zhang,et al.  DISTRIBUTIONS OF GAMMA-RAY BURSTS AND BLAZARS IN THE Lp–Ep-PLANE AND POSSIBLE IMPLICATIONS FOR THEIR RADIATION PHYSICS , 2014, 1407.6159.

[15]  Scott Croom,et al.  Gemini Imaging of QSO Host Galaxies at z ~ 2 , 2004, astro-ph/0401442.

[16]  University of Oxford,et al.  A NICMOS imaging study of high-z quasar host galaxies , 2000, astro-ph/0010007.

[17]  Chile,et al.  Near-infrared template spectra of normal galaxies: k-corrections, galaxy models and stellar populations , 2001, astro-ph/0104427.

[18]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[19]  William D. Cotton,et al.  The Nrao VLA Sky Survey: Lessons Applied , 1998 .

[20]  R. Falomo,et al.  VLT adaptive optics imaging of QSO host galaxies and their close environment at z ∼ 2.5: Results from a pilot program , 2004, astro-ph/0412365.

[21]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[22]  Roberto Ragazzoni,et al.  An update of the on-sky performance of the layer-oriented wavefront sensor for MAD , 2010, Astronomical Telescopes + Instrumentation.

[23]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[24]  R. Brast,et al.  ON THE RADIO AND NEAR-INFRARED JET OF PKS 2155−304 AND ITS CLOSE ENVIRONMENT , 2013, 1301.1470.

[25]  R. Brast,et al.  The jet of the BL Lac object PKS 0521 -365 in the near-IR : MAD adaptive optics observations , 2009, 0906.1069.

[26]  Roberto Ragazzoni,et al.  Astrometry with the MCAO instrument MAD. An analysis of single-epoch data obtained in the layer-oriented mode , 2011, 1105.2502.

[27]  C. Mackay,et al.  Interacting elliptical galaxies as hosts of intermediate-redshift quasars , 1995, Nature.

[28]  M. SubbaRao,et al.  The Luminosity Function of Morphologically Classified Galaxies in the Sloan Digital Sky Survey , 2002, astro-ph/0212405.

[29]  Italy Universita dell'Insubria,et al.  Nuclear to host galaxy relation of high redshift quasars , 2007, astro-ph/0701417.

[30]  D. H. Hughes,et al.  Quasars, their host galaxies and their central black holes , 2001, astro-ph/0108397.

[31]  Bernard Delabre,et al.  On-sky Testing of the Multi-Conjugate Adaptive Optics Demonstrator , 2007 .

[32]  Santiago,et al.  The Cosmic Evolution of Quasar Host Galaxies , 2003, Proceedings of the International Astronomical Union.

[33]  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[34]  P. Petitjean,et al.  Adaptive optics imaging of low and intermediate redshift quasars , 2001, astro-ph/0103232.

[35]  Matthew Colless,et al.  The 2dF Galaxy Redshift Survey: Final data release , 2003, astro-ph/0306581.

[36]  R. Brast,et al.  The jet of the BL Lacertae object PKS 2201+044: MAD near-IR adaptive optics observations and comparison with optical, radio and X-ray data , 2010, 1012.3620.

[37]  Y. Kovalev,et al.  IDENTIFICATION OF THE EARLY FERMI/LAT GAMMA-RAY BRIGHT OBJECTS WITH EXTRAGALACTIC VLBI SOURCES , 2009, 0908.4152.

[38]  S. Tremaine,et al.  CONSTRAINING SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES IN QUASARS WITH MULTI-EPOCH SPECTROSCOPY. I. THE GENERAL QUASAR POPULATION , 2013, 1306.4330.

[39]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[40]  J. Dunlop,et al.  The cosmological evolution of quasar black hole masses , 2003, astro-ph/0310267.

[41]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[42]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[43]  M. Bremer,et al.  Observational Cosmology with the New Radio Surveys , 1998 .

[44]  M. Uslenghi,et al.  Low-redshift quasars in the Sloan Digital Sky Survey Stripe 82. The host galaxies , 2014, 1402.4300.

[45]  Rui Alves,et al.  Integration and first results of the CAMCAO NIR camera , 2006, SPIE Astronomical Telescopes + Instrumentation.

[46]  Bradley M. Peterson,et al.  Measuring the Masses of Supermassive Black Holes , 2014 .

[47]  M. Frailis,et al.  THE RADIO/GAMMA-RAY CONNECTION IN ACTIVE GALACTIC NUCLEI IN THE ERA OF THE FERMI LARGE AREA TELESCOPE , 2011, 1108.0501.

[48]  K. McLeod,et al.  NICMOS Observations of Low-Redshift Quasar Host Galaxies , 2000, astro-ph/0010127.

[49]  D. Thompson,et al.  THE FERMI ALL-SKY VARIABILITY ANALYSIS: A LIST OF FLARING GAMMA-RAY SOURCES AND THE SEARCH FOR TRANSIENTS IN OUR GALAXY , 2013, 1304.6082.

[50]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[51]  A. Baruffolo,et al.  MAD: practical implementation of MCAO concepts , 2005 .

[52]  Claire E. Max,et al.  ADAPTIVE OPTICS IMAGING OF QUASI-STELLAR OBJECTS WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI? , 2011 .

[53]  M. Uslenghi,et al.  THE PROPERTIES OF QUASAR HOSTS AT THE PEAK OF THE QUASAR ACTIVITY , 2009, 0908.0204.

[54]  D. B. Sanders,et al.  Near-Infrared Adaptive Optics Imaging of QSO Host Galaxies , 2006, astro-ph/0605079.

[55]  Roberto Ragazzoni,et al.  Adaptive optics for 100-m-class telescopes: new challenges require new solutions , 2000, Astronomical Telescopes and Instrumentation.