Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics. The program to calculate P-V-T properties of pressure markers is presented.The program was developed using VBA module in MS Excel.The calculation scheme is based on the formalism of equations of state.Thermodynamic and P-V-T properties of MgO, diamond and 9 metals is calculated.

[1]  T. Duffy,et al.  Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar , 2012 .

[2]  M. Katsnelson,et al.  The most incompressible metal osmium at static pressures above 750 gigapascals , 2015, Nature.

[3]  П. И. Дорогокупец,et al.  ПОЧТИ АБСОЛЮТНЫЕ УРАВНЕНИЯ СОСТОЯНИЯ АЛМАЗА, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, W ДЛЯ КВАЗИГИДРОСТАТИЧЕСКИХ УСЛОВИЙ , 2012 .

[4]  R. Reeber,et al.  Thermal expansion and molar volume of MgO, periclase, from 5 to 2900 K , 1995 .

[5]  G. Alers,et al.  ELASTIC CONSTANTS OF SILVER AND GOLD , 1958 .

[6]  Y. Fei,et al.  Thermal equation of state to 33.5 GPa and 1673 K and thermodynamic properties of tungsten , 2013 .

[7]  Y. Fei,et al.  Thermal equation of state and thermodynamic properties of molybdenum at high pressures , 2013 .

[8]  A. Shatskiy,et al.  Thermal equation of state and thermodynamic properties of iron carbide Fe3C to 31 GPa and 1473 K , 2013 .

[9]  K. Litasov,et al.  The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite, and postperovskite and phase diagram for the Mg2SiO4 system at pressures of up to 130GPa , 2015 .

[10]  A. Oganov,et al.  Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures , 2007 .

[11]  Yoshio Sumino,et al.  Temperature coefficients of elastic constants of single crystal MgO between 80 and 1,300 K , 2013 .

[12]  L. V. Al’tshuler,et al.  Isotherms and Grüneisen functions for 25 metals , 1987 .

[13]  G. White,et al.  Heat Capacity of Reference Materials: Cu and W , 1984 .

[14]  Kazutaka G. Nakamura,et al.  Hugoniot measurement of gold at high pressures of up to 580GPa , 2008 .

[15]  F. Featherston,et al.  ELASTIC CONSTANTS OF TANTALUM, TUNGSTEN, AND MOLYBDENUM , 1963 .

[16]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[17]  William A. Bassett,et al.  Diamond anvil cell, 50th birthday , 2009 .

[18]  Ma Diana Northup Msls,et al.  Thermodynamic Properties of Substances , 2008 .

[19]  秋本 俊一 V. N. Zharkov and V. A. Kalinin: Equations of State for Solids at High Pressures and Temperatures, Consultants Bureau, New York and London, 1971, 257ページ, 27×21cm, 13,000円. , 1972 .

[20]  R. Lowrie,et al.  Dynamic Elastic Properties of Polycrystalline Tungsten, 24°–1800°C , 1965 .

[21]  K. Litasov,et al.  Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2–NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K , 2013 .

[22]  Cáceres,et al.  Simple equation of state for solids under compression. , 1996, Physical review. B, Condensed matter.

[23]  S. Saxena,et al.  Thermal Expansion of Periclase (MgO) and Tungsten (W) to Melting Temperatures , 1997 .

[24]  L. Burakovsky,et al.  Analytic model of the Gruneisen parameter all densities , 2002, cond-mat/0206160.

[25]  Y. Fei Effects of temperature and composition on the bulk modulus of (Mg,Fe)O , 1999 .

[26]  R. Hemley Percy W. Bridgman's second century , 2010 .

[27]  J. N. Fritz,et al.  Shock compression of tungsten and molybdenum , 1992 .

[28]  P. Richet,et al.  High-temperature thermal expansion of lime, periclase, corundum and spinel , 1999 .

[29]  R. A. Robie,et al.  High-temperature heat capacities of corundum, periclase, anorthite, CaAl 2 Si 2 O 8 glass, muscovite, pyrophyllite, KAlSi 3 O 8 glass, grossular, and NaAlSi 3 O 8 glass , 1979 .

[30]  N. Gokcen,et al.  Thermodynamic data for mineral technology , 1984 .

[31]  Y. Tange,et al.  Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments , 2008 .

[32]  S. Srivastava,et al.  Analysis of volume dependence of Grüneisen ratio , 2009 .

[33]  O. Anderson,et al.  Anharmonicity and the equation of state for gold , 1989 .

[34]  M. Mezouar,et al.  Equations of state of six metals above 94 GPa , 2004 .

[35]  Y. Fei,et al.  Shock-induced phase transitions in the MgO FeO system to 200 GPa , 2008 .

[36]  K. Hirose,et al.  Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications , 2008 .

[37]  P. Dorogokupets P–V–T equations of state of MgO and thermodynamics , 2010, PCM 2010.

[38]  S. Marsh Lasl Shock Hugoniot Data , 1980 .

[39]  B. Singh,et al.  Volume dependence of the Grüneisen parameter and maximum compression limit for iron , 2007 .

[40]  B. Bernstein Elastic Properties of Polycrystalline Tungsten at Elevated Temperatures , 1962 .

[41]  T. Ahrens,et al.  Compressional sound velocity, equation of state, and constitutive response of shock‐compressed magnesium oxide , 1995 .

[42]  W. Eichenauer,et al.  Thermophysical Properties of Matter. Volume 4: Specific Heat, Metallic Elements and Alloys. Herausgeber: Y. S. Touloukian und C. Y. Ho, IFI/Plenum, New York‐Washington 1970. Vertrieb in Europa: Heyden & Son, Ltd., London. 830 Seiten, Preis: DM 260,–. , 1971 .

[43]  T. Tsuchiya First‐principles prediction of the P‐V‐T equation of state of gold and the 660‐km discontinuity in Earth's mantle , 2003 .

[44]  Equations of state of Cu and Ag and revised ruby pressure scale , 2003 .

[45]  W. Holzapfel Equations of state for solids under strong compression , 1998 .

[46]  A. Shatskiy,et al.  P-V-T equation of state of siderite to 33 GPa and 1673 K , 2013 .

[47]  A. Oganov,et al.  Equations of state of Al, Au, Cu, Pt, Ta, and W and revised ruby pressure scale , 2006 .

[48]  O. Anderson,et al.  Measured elastic moduli of single-crystal MgO up to 1800 K , 1989 .

[49]  R. Mclellan,et al.  High-temperature elastic constants of gold single-crystals , 1991 .

[50]  H. Mao,et al.  Quasi‐hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure‐volume‐temperature equation of state , 2001 .

[51]  P. Dorogokupets Equation of state of magnesite for the conditions of the Earth’s lower mantle , 2007 .

[52]  Robert R. Reeber,et al.  The role of defects on thermophysical properties : thermal expansion of V, Nb, Ta, Mo and W , 1998 .

[53]  L. Himmel,et al.  Temperature Dependence of the Elastic Constants of Cu, Ag, and Au above Room Temperature , 1966 .

[54]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[55]  F. D. Stacey,et al.  High pressure equations of state with applications to the lower mantle and core , 2004 .

[56]  A. Tybulewicz,et al.  Equations of State for Solids at High Pressures and Temperatures , 2014 .

[57]  A. Dewaele,et al.  Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales , 2007 .

[58]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[59]  W. Zingg,et al.  Structure of splat-cooled AlCr alloys , 1976 .

[60]  L. Knopoff,et al.  Approximate Compressibility of Elements and Compounds , 1965 .