Anisotropic elastic properties of microtubules

Abstract.We review and model the experimental parameters which characterize elastic properties of microtubules. Three macroscopic estimates are made of the anisotropic elastic moduli, accounting for the molecular forces between tubulin dimers: for a longitudinal compression of a microtubule, for a lateral force and for a shearing force. These estimates reflect the anisotropies in these parameters observed in several recent experiments.

[1]  A. Libchaber,et al.  Microtubules and vesicles under controlled tension , 1997 .

[2]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[3]  R. Wade,et al.  Microtubule structure at improved resolution. , 2001, Biochemistry.

[4]  D. Wirtz,et al.  Keratin Filament Suspensions Show Unique Micromechanical Properties* , 1999, The Journal of Biological Chemistry.

[5]  François Nédélec,et al.  Computer simulations reveal motor properties generating stable antiparallel microtubule interactions , 2002, The Journal of cell biology.

[6]  M. Schliwa,et al.  Flexural rigidity of microtubules measured with the use of optical tweezers. , 1996, Journal of cell science.

[7]  J. Mizushima-Sugano,et al.  Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances. , 1983, Biochimica et biophysica acta.

[8]  Libchaber,et al.  Buckling microtubules in vesicles. , 1996, Physical review letters.

[9]  D. Odde,et al.  Estimates of lateral and longitudinal bond energies within the microtubule lattice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Marder Condensed Matter Physics , 2015 .

[11]  H. Erickson,et al.  XMAP215 is a long thin molecule that does not increase microtubule stiffness. , 2001, Journal of cell science.

[12]  Dimitrije Stamenović,et al.  Cell prestress. II. Contribution of microtubules. , 2002, American journal of physiology. Cell physiology.

[13]  H Tashiro,et al.  Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. , 1995, Cell motility and the cytoskeleton.

[14]  Henrik Flyvbjerg,et al.  Modeling elastic properties of microtubule tips and walls , 1998, European Biophysics Journal.

[15]  Nathan A. Baker,et al.  The physical basis of microtubule structure and stability , 2003, Protein science : a publication of the Protein Society.

[16]  C. Schönenberger,et al.  Nanomechanics of microtubules. , 2002, Physical review letters.

[17]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[18]  D. Boal,et al.  Mechanics of the cell , 2001 .

[19]  M. Kokkoris,et al.  THE BOOK OF ABSTRACTS , 2015 .

[20]  E. Nogales,et al.  Refined structure of alpha beta-tubulin at 3.5 A resolution. , 2001, Journal of molecular biology.

[21]  Fumio Oosawa,et al.  Thermodynamics of the polymerization of protein , 1975 .

[22]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[23]  F. MacKintosh,et al.  Deformation and collapse of microtubules on the nanometer scale. , 2003, Physical review letters.

[24]  T D Pollard,et al.  Mechanical properties of brain tubulin and microtubules , 1988, The Journal of cell biology.

[25]  Kenneth H. Downing,et al.  Structure of the αβ tubulin dimer by electron crystallography , 1998, Nature.

[26]  P. Janmey,et al.  Viscoelastic properties of vimentin compared with other filamentous biopolymer networks , 1991, The Journal of cell biology.

[27]  J. Howard Mechanics of motor proteins , 2002 .

[28]  B. Mickey,et al.  Rigidity of microtubules is increased by stabilizing agents , 1995, The Journal of cell biology.

[29]  J. Howard,et al.  Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape , 1993, The Journal of cell biology.

[30]  J. Bereiter-Hahn,et al.  Viscoelastic properties of f-actin, microtubules, f-actin/alpha-actinin, and f-actin/hexokinase determined in microliter volumes with a novel nondestructive method. , 1999, Biophysical journal.

[31]  Kim,et al.  Elastic vibrations of microtubules in a fluid. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  M. Holley,et al.  Mechanics of microtubule bundles in pillar cells from the inner ear. , 1997, Biophysical journal.

[33]  E. Nogales A structural view of microtubule dynamics , 1999, Cellular and Molecular Life Sciences CMLS.

[34]  H. Flyvbjerg,et al.  Limited flexibility of the inter-protofilament bonds in microtubules assembled from pure tubulin , 1998, European Biophysics Journal.