Acceleration of surface lowering on the tidewater glaciers of Icy Bay, Alaska, U.S.A. from InSAR DEMs and ICESat altimetry

Abstract Much of the increasing rate of glacier wastage observed during the late 20th century is attributed to retreat and thinning of tidewater glaciers grounded below sea level in fiords. We estimate the area-average, i.e. the integrated volume change over glacier area, elevation changes on Guyot, Yahtse and Tyndall Glaciers, Icy Bay, Alaska. Our results indicate that from 1948 to 1999, the accumulation area of Guyot Glacier above 1220 m elevation lowered at an area-average rate of 0.7 ± 0.1 m/yr. The accumulation area of Yahtse Glacier, above 1220 m elevation lowered from 1972 to 2000 at an area-average rate of 0.9 ± 0.1 m/yr. On a same-area basis, Tyndall Glacier lowered from 1972 to 1999 at an area-average rate of 1.4 ± 0.2 m/yr; then accelerated substantially to 2.8 ± 0.2 m/yr from 1999 to 2002. From 2000 to 2003 the accumulation area of Yahtse Glacier lowered at 1.5 ± 0.3 m/yr, on average. The drawdown of these accumulation areas have occurred while snow accumulation at 5000+ m on Mt. Logan, Canada, has shown a strong increase from 1976 to 2000. Concurrently, coastal winter mean temperatures at Cordova and Yakutat, south-central Alaska, have increased to above freezing since about 1979. Retreat and surface lowering of the Icy Bay glaciers is attributed to tidewater glacier dynamics with climate warming effects superimposed.

[1]  E. Rodríguez,et al.  A Global Assessment of the SRTM Performance , 2006 .

[2]  David J. Harding,et al.  SRTM C-band and ICESat Laser Altimetry Elevation Comparisons as a Function of Tree Cover and Relief , 2006 .

[3]  Bruce F. Molnia,et al.  Late nineteenth to early twenty-first century behavior of Alaskan glaciers as indicators of changing regional climate , 2007 .

[4]  Manfred Zink,et al.  Interferometric alignment of the X-SAR antenna system on the space shuttle radar topography mission , 2002, IEEE Trans. Geosci. Remote. Sens..

[5]  Mark F. Meier,et al.  Fast tidewater glaciers , 1987 .

[6]  M. Meier,et al.  Twentieth century climate change: evidence from small glaciers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  H. R. Schmoll,et al.  A Geological Guide to Wrangell-Saint Elias National Park and Preserve, Alaska: A Tectonic Collage of Northbound Terranes , 2000 .

[8]  S. O’Neel,et al.  Short-term flow dynamics of a retreating tidewater glacier: LeConte Glacier, Alaska, U.S.A. , 2001, Journal of Glaciology.

[9]  R. Sharp ACCUMULATION AND ABLATION ON THE SEWARD-MALASPINA GLACIER SYSTEM, CANADA-ALASKA , 1951 .

[10]  A. Post The exceptional advances of the Muldrow, Black Rapids, and Susitna glaciers , 1960 .

[11]  A. Waple,et al.  State of the Climate in 2002 , 2003 .

[12]  Shusun Li Summer environmental mapping potential of a large-scale ERS-1 SAR mosaic of the state of Alaska , 1999 .

[13]  Brian Hartmann,et al.  The Significance of the 1976 Pacific Climate Shift in the Climatology of Alaska , 2005 .

[14]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[15]  Intermap INTERMAP Product Handbook and Quick Start Guide , 2004 .

[16]  A. Arendt,et al.  Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level , 2002, Science.

[17]  B. Vaughn,et al.  Columbia Glacier, Alaska: changes in velocity 1977-1986 , 1987 .

[18]  P. E. Calkin,et al.  A Revised and Extended Holocene Glacial History of Icy Bay, Southern Alaska, U.S.A , 2006 .

[19]  R. Sharp MALASPINA GLACIER, ALASKA , 1958 .

[20]  Steven R. Hare,et al.  Empirical evidence for North Pacific regime shifts in 1977 and 1989 , 2000 .

[21]  G. Gudmundsson,et al.  Diurnal variations in vertical strain observed in a temperate valley glacier , 2003 .

[22]  A. Braun,et al.  Calibration of the shuttle radar topography mission X-SAR instrument using a synthetic altimetry data model , 2002 .

[23]  Martin J. Siegert,et al.  EOS Trans. AGU , 2003 .

[24]  Diana Walter,et al.  How Complementary are SRTM-X and -C Band Digital Elevation Models? , 2006 .

[25]  K. C. Partington Discrimination of glacier facies using multi-temporal SAR data , 1998 .

[26]  D. Alsdorf,et al.  Capability of SRTM C- and X-band DEM Data to Measure Water Elevations in Ohio and the Amazon , 2006 .

[27]  A. Arendt,et al.  Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods , 2006 .

[28]  Bernhard Rabus,et al.  Multi‐decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska , 2003 .

[29]  R. Braithwaite,et al.  Glacier mass balance: the first 50 years of international monitoring , 2002 .

[30]  W. Tangborn A Mass Balance Model that Uses Low-altitude Meteorological Observations and the Area–Altitude Distribution of a Glacier , 1999 .

[31]  Li Jun,et al.  Seasonal and interannual variations of firn densification and ice-sheet surface elevation at the Greenland summit , 2002, Journal of Glaciology.

[32]  S. P. Anderson,et al.  Strong feedbacks between hydrology and sliding of a small alpine glacier , 2004 .

[33]  K. Echelmeyer,et al.  The slow advance of a calving glacier: Hubbard Glacier, Alaska, U.S.A. , 2003, Annals of Glaciology.

[34]  Charles F. Raymond,et al.  How do glaciers surge? A review , 1987 .

[35]  D. Levinson STATE OF THE CLIMATE IN 2004 , 2005 .

[36]  D. A. Smith,et al.  GEOID99 and G99SSS: 1-arc-minute geoid models for the United States , 2001 .

[37]  A. Post,et al.  A preliminary forecast of the advance of Hubbard Glacier and its influence on Russell Fiord, Alaska , 1991 .

[38]  Jacek Jania,et al.  The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen , 2002, Journal of Glaciology.