Proof of Toft's Conjecture: Every Graph Containing No Fully Odd K4 is 3-Colorable
暂无分享,去创建一个
[1] Carsten Thomassen,et al. Non-separating induced cycles in graphs , 1981, J. Comb. Theory, Ser. B.
[2] Robin Thomas,et al. The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.
[3] G. Dirac. A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs , 1952 .
[4] Robin Thomas,et al. Hadwiger's conjecture forK6-free graphs , 1993, Comb..
[5] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[6] Bjarne Toft,et al. Special subdivisions ofK4 and 4-chromatic graphs , 1980 .
[7] Tommy R. Jensen,et al. Graph Coloring Problems , 1994 .
[8] Tommy R. Jensen,et al. Note on a conjecture of toft , 1995, Comb..
[9] Bert Gerards,et al. A min-max relation for stable sets in graphs with no odd-K4 , 1989, J. Comb. Theory, Ser. B.
[10] Bert Gerards,et al. Matrices with the edmonds—Johnson property , 1986, Comb..
[11] Leslie E. Trotter,et al. Stability Critical Graphs and Even Subdivisions of K4 , 1990, J. Comb. Theory, Ser. B.
[12] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.
[13] Paul A. Catlin,et al. Hajós' graph-coloring conjecture: Variations and counterexamples , 1979, J. Comb. Theory, Ser. B.
[14] Bert Gerards,et al. Homomorphisms of graphs into odd cycles , 1988, J. Graph Theory.
[15] V. Chvátal. On certain polytopes associated with graphs , 1975 .